2021/04,江端さんの技術メモ

AWS inspectorからのセキュリティ対応で苦慮しています。

■AWS Inspectror - Assement Report  Finding Report の一部

詰まる所、セキュリティパッチを当てろということのようですが、どうも当っていないようです。

結構頻繁に、

>sudo apt-get install

>sudo apt-get update

> sudo apt-get upgrade

を精髄反射的に投入してきたのですが、どうも改善されていないらしくて、有識者の方のアドバイスを受けながら作業をしていました。

■ まずは、ターゲットOSの確認
ログイン画面を見る限り、ターゲットOSは、"20.04.2 LTS " で間違いありませんでした。

■"20.04.2 LTS"のセキュリティパッケージを管理しているサイトにいってみた

https://ubuntu.com/download/desktop/thank-you?version=20.04.2.0&architecture=amd64 からパッケージを確認

ダウンロードを指示されましたが、まさか、isoをインストールして、今のEC2を消滅(リセット)させる、というとありえないので・・・

とりあえず、これはキャンセルしました。

■ https://news.mynavi.jp/itsearch/article/hardware/2040 に記載のあった方法

これを見て、赤線のところを実施していなかったことに気がつきました。

■ >sudo apt-get dist-upgrade の実行結果

 "1029-aws"なる表示がでています。これでパッケージがインストールされたのかもしれません。

■ 結果

本件で、再度、Amazon Inspectror - Assement Report を確認して貰ったら、セキュリティパッチが当っていることが分かりました。

以上

2021/04,江端さんの忘備録

子どもがお手伝いしたら、おこずかいを上げる ――

"To give money to children for helping out at home"

このテーマは、何度となく現われ、その度に、批判、非難されるテーマです。

This is a thesis that appears again and again, and each time it is criticized and condemned.

しかし、私、次女の中学受験の時に、おおっぴらに、このアプローチを使っていました。

However, I used this approach openly when I was preparing my second daughter for her junior high school entrance exam.

『日本史の年号とイベントのペア(500以上)を、何も見ずに、一文字も間違えずに、最後まで暗唱できたら、50円』

"She will receive 50 yen (coin), if she coudl recite Japanese history year/event pairs (500+) to the end without looking at anything and without making a single mistake"

というのを、毎日やっていました。

We did this every day.

-----

何も見ないで、天井の向きながら行うので、江端家では、この方式を「エア(air)」と呼んでいました。

The Ebata family called this method "air" because it was done without looking at anything and while facing the ceiling.

さらに、この方式を、理科、社会一般にも拡張しました。

We have also extended this method to science and social studies in general.

ともあれ、次女は無事、志望校に合格することができました。

Anyway, she was able to successfully pass the entrance exam to her school of choice.

(詳しくは、「ゆかりさんプロジェクト」をご覧下さい)

(For more information, please see Yukari-san Project)

-----

次女にとっても、私にとっても、この"50円"は、"報酬"ではなく、50円玉という"トークン"だったのだと思います。

For my second daughter and me, the 50 yen was not a reward, but a token, a 50 yen coin.

この方法は、"50円"という金銭的な価値ではなく、その「金属トークンを集める」ということに(親子の両方が)意義を見い出せるようにするためのマインドセットです。

This method is a mindset that allows both parents and children to find meaning in collecting metal tokens, rather than the monetary value of 50 yen.

故に、私は、この方法は『お手伝いの対価としてのおこずかい』とは、意味が違うと思っています。

Therefore, I believe that this method is not the same as a "to give money to children for helping out at home"

-----

受験勉強は、誰にとっても、かったるくて、面倒くさいものです。

Studying for exams is a tedious process for anyone.

特に小学生に、大人のロジックは通用しません。

Especially for elementary school students, adult logic does not apply.

なぜなら、小学生は大人ではないからです。

This is because elementary school students are not adults.

ならば、保護者は、子どものマインドセットをする為に、色々な工夫を試みなければなりません。

Then, parents must try various ways to set the mindset of their children.

面倒くさいとは思いますし、その工夫の大半は、失敗します。

I know it's a hassle, and most of those will fail.

それでも、保護者は、子どもより長い年月を生きているのですから、工夫を試み続けなければなりません。

Nevertheless, parents live longer than their children, so they must continue to try their efforts.

2021/04,江端さんの忘備録

私は、コラムに挿入するイラスト(デジ絵)も描いているのですが、とても苦労しています。

I also draw illustrations (digi-e) to insert in my columns, but it is always very hard for me.

画才がないので、他の著作物を参考にして(マネして)記載しています。

As I am not a talented artist, I have used other works as a reference.

ですので、人物の性別や、体格を変化することだけでも苦労していますし、カメラビュー(視点)を変えたいと思っても、全く対応ができません。

Therefore, I have a hard time changing the gender and physique of a person, and even if I want to change the camera view (point of view), I can't handle it at all.

画才がある人を、心底羨しいと思います。

I truly envy those who have the talent to paint.

-----

という話を次女にしていたのですが、

I was talking to my second daughter about this, however she said to me smoothly,

―― 『一ヶ月、きちんとデッサンの勉強すれば、誰だって描けるようになるよ』

"Anyone comes to draw if they study drawing properly for a month"

と、サラっと言われてしまいました。

それを聞いた私は、

When I heard that, I was about to say

『それは、才あるものの、奢(おご)った意見だ!』

"That's the opinion of the gifted !"

と言いそうになった直前に、ふと気がつきました。

However I noticed that it was me to say

―― 『一ヶ月、きちんとプログラムの勉強すれば、誰だってプログラミングできるようになるよ』

"Anyone comes to program if they study programming properly for a month.

と言い続けているのは私です。

そして、私は、本気でそれを信じています。

And I seriously believe that.

実際、『プログラミングできない』と言う人物の大半は、『人生で一行もコードを書いたことがない』のです。

In fact, most people who say they can't program have never written a line of code in their lives.

ですから、私は、「誰でもプログラミングはできる」と思っているのです。

Therefore, I believe that anyone can program.

-----

一方、私は、

I, on the other hand, a person who has demonstrated the "counterexample" of

―― 『一年間、米国に滞在すれば、英語なんて簡単にしゃべれるようになるよ』

"If you stay in the U.S. for a year, you'll be able to speak English easily"

の「反例」を実証してみせた人間です。

さらに、その話を、2年間も連載のネタにした当事者です。

Furthermore, I was the one who made the story into a series of articles for two years.

-----

ともあれ、次女に言われた、

Anyway, for my second daughter's saying,

『一ヶ月、きちんとデッサンの勉強すれば、誰だって描けるようになるよ』

"Anyone comes to draw if they study drawing properly for a month"

を、真面目に検討してみよう、という気になりました。

I was ready to give it some serious consideration.

2021/04,江端さんの忘備録

私は、英語に愛されないエンジニアですが、毎日のように、膨大な英語を読まされています。

I am an engineer who is not loved by the English, but I am forced to read vast amounts of English every day.

―― コンピュータに

by computers.

-----

以前、嫁さんの実家で、システムチューニングをしている時に、義母から『まあ、こんなに横文字が出てくるのに、凄いわね』と言われたことがあります。

Once, when I was tuning the system at my wife's parents' house, my mother-in-law said to me, 'Well, it's great to read so many horizontal letters'

あ、そうか。これも英語といえば英語か ―― と、今さらながら気がつきました。

Oh, I see. I've just realized that this is also English.

しかし、エンジニアがこれらのコンピュータからのメッセージと格闘している時、私は『英語を「読んでいる」』のではありません。

But when engineers struggle with these messages from the computer, they am not 'reading' English.

『単語を「見て」いるんです』

They are 'observing' the word.

-----

コンピュータのコンソールに出てくる英語なんか、読む必要ありません。

They don't need to read the English that comes up on the computer console.

"Error", "unexpected", "unknown", "irregular", "suspended", "failed", "not found", "expired", "serious", "warning", "overflowed", "invalid", "too long", "out of range", "occurred", "dropped".....

要するに、『上記の単語が出てくれば"失敗"』 ―― これだけ分かっていれば十分です。

In short, if they find any of the above words, they've failed -- that's all they need to know.

-----

結局のところ、「システムを作る」とは、

After all, "creating a system" means as same as

『これらのメッセージが出なくなるまで、ひたすら時間をかけて、延々とやり方を変更し続ける』

"They will just keep changing the way they do things over and over again until they don't see these messages anymore"

ということと同じことです。

2021/04,江端さんの忘備録

(昨日の続きです)

(Continuation from yesterday)

以前記載した日記を再掲します。

This is a reprint of a diary entry I made in the past.

===== ここから ======

===== from here ======

今回の福島原発事故は、想定外の津波に因るものとされています。

It is believed that the Fukushima nuclear accident was caused by an unexpected tsunami.

でも、少し考えてみたいと思います。

But I'd like to give it some thought.

その「想定外」が事実であったとしても、津波は原子炉への直接の被害は与えていないのです。

Even if that "unexpected" is true, the tsunami did not directly damage the reactors.

津波は、バックアップ用のディーゼル発電機とその周辺機器を無力化しただけです。

The tsunami only incapacitated the backup diesel generator and its peripheral equipment.

-----

では、私が10人くらいのテロリストを募って、3年くらいの破壊工作の訓練を受けて、福島原発に侵入してみたらどうでしょうか。

So what if I recruited about 10 terrorists, trained them for about three years in sabotage, and then broke into the Fukushima nuclear power plant?

ダイナマイトで、送電塔を全部倒壊させて、ディーゼル発電機を破壊し、その後、武器で発電所を制圧して、建屋の人間を全部人質として立て籠ったら?

What if we used dynamite to bring down all the transmission towers, destroy the diesel generators, and then overpower the power plant with weapons and holed up all the people in the building as hostages?

燃料棒溶解なんぞ待たないで、拳銃で職員を脅して、中央制御室から、燃料棒を引き上げさせてそのまま放置しておいたら?

Instead of waiting for the fuel rods to dissolve, why don't you threaten the staff with a gun and make them pull the fuel rods out of the central control room and leave them there?

警察の姿が視認できる度に、人質を纏めて数人くらい殺害して、原子力発電所に誰も入れないようにしたら?

Why don't I just kill a few hostages at a time, just enough for the police to see, and make sure no one gets into the nuclear power plant?

勿論、テロリストである私とその同士達は、最初から自分の命が助かろうという気持ちは欠片もありません。

Of course, as terrorists, my fellow terrorists and I have no desire to save our own lives from the start.

-----

放射性核燃料が手がつけられなくなる前に、民間人の犠牲者を前提に、特殊部隊は、私達テロリスト全員をきちんと殺害してくれるでしょうか。

Will the special forces be able to properly kill all of us terrorists, assuming civilian casualties, before the radioactive nuclear fuel gets out of hand?

なんか、別の福島原発事故を「創り出す」ことは、そんなに難しくないように思えます。

It seems to me that "creating" another Fukushima nuclear accident is not that difficult.

-----

残念ながら、この発想、私のオリジナルではなく、「神の火」(高村薫著)の最後のシーンから盗用しています。

Unfortunately, this idea is not my original, but I stole it from the last scene of "God's Fire" (written by Kaoru Takamura).

この著書の中では、主人公とその友人のたった二人が、冬の夜の原発に襲撃をかけ、原子炉格納容器の蓋を開くというテロに成功します。

In this book, the protagonist and his friend, just two people, successfully attack a nuclear power plant on a winter night and open the lid of the reactor containment vessel.

しかも、その緻密な計画は、読者からしても全く無理がなく、十分に現実可能な範囲にあると思えました。

Moreover, the meticulous planning was not at all unreasonable, even for the reader, and seemed feasible enough.

このテロを防ぐには、武装した一個分隊を、日本の稼働中の原発の全てに配置しないと駄目だろう、と思えます。

It seems to me that to prevent such a terrorist attack, a squad of armed men would have to be placed at every operating nuclear power plant in Japan.

===== ここまで ======

===== to here ======

それともう一つ。

And another thing.

===== ここから ======

===== from here ======

もっと話を簡単にしてみましょうか。

Let's try to make the story simpler, shall I?

我が国と仲が良いとは言えない隣国が、「瀬戸際外交」を踏み越えて、日本の原子炉全部をミサイル攻撃、または空爆してきたら、どうなるのでしょうか。

What would happen if a neighboring country, which is not on good terms with our country, overstepped the bounds of "brinkmanship diplomacy" and launched a missile attack or air strike on all of Japan's nuclear reactors?

血の気の引くような思いをする時間もなく、一瞬で国土と水は放射能で汚染され、(国家の存亡はどうでも良いですが)、国民の大半は生命と引き換えの被曝に晒されるのでしょうね。

In a matter of seconds, the land and water will be contaminated with radiation, and the majority of the people will be exposed to radiation at the cost of their lives.

知らない人も多いかと思いますが、1981年に、現実にイスラエルがイラクの原子力発電所を空爆しています(バビロン作戦)。

Many people may not know this, but in 1981, Israel actually bombed a nuclear power plant in Iraq (Operation Babylon).

戦争となれば、なんでもありです。

When it comes to war, anything is possible.

===== ここまで ======

===== to here ======

嫁さん:「この"柏崎刈羽原子力発電所"で何があったの?」

Wife: "What happened at this 'Kashiwazaki-Kariwa Nuclear Power plant?"

江端:「超乱暴に、一言で言うのであれば、『原発の中央制御室に至るセンサが壊れていて、鍵がかかっていなくて、"テロリストさん、いらっしゃい" 状態であった、ということ」

Ebata: "If I had to put it in one sentence, it would be, 'The sensors leading to the central control room of the nuclear power plant were broken, the door was unlocked, and we were in a state of "welcome, terrorists.

嫁さん:「・・・嘘」

Wife: "...lie"

江端:「もし、私が、単身、中央制御室への侵入を果たせたら ―― もちろん『不法侵入』だけど ―― 別の意味でヒーローになっていただろうな、と思う」

Ebata: "If I had been able to break into the central control room by myself -- 'trespassing,' of course -- I would have been a hero in a different way, I think.

私は、このニュースで、ショックを受けたり、激怒している人が少ないことに、ショックを受けています。

I am shocked that so few people are shocked or outraged by this news.

"Fukushima 50"を見た人なら、電源設備を津波で水没させなくとも、人の手でダイナマイトで破壊するだけで、全く同じような(原子炉格納容器の爆発に至るまで)状況を作れたはずだ ―― と、思い至れると思っていました。

"I thought that anyone who had seen Fukushima 50 would be able to figure out that they could have created exactly the same situation (up to and including the reactor containment explosion) by simply dynamiting the power plant by hand, without submerging it in the tsunami.

-----

ちなみに、朝鮮半島の北側にある国が、我が国を攻撃することになったら、核を搭載した大陸弾道ミサイルなんか不要です。

By the way, if a country to the north of the Korean peninsula decides to attack our country, they don't need a continental ballistic missile equipped with nuclear weapons.

1200kmの飛翔能力のある、準中距離弾道ミサイルを、日本にある54基の稼動中の9基の原子炉のどれか1つに、1発打ち込めば、そこで「ゲームセット」です。

A single launch of a semi-medium-range ballistic missile, capable of flying 1,200 kilometers, into any one of Japan's 54 operating nuclear reactors (nine of them) would be "game over.

2021/04,江端さんの技術メモ

  1. 前提
    AWS Lightsail に、Visual Studio Code からリモートから入って開発したい。
    Windowsには、SSHが入っているとする。
  2. ~/.ssh/config に以下を書き込む
    Host sea-anemone.tech
         HostName sea-anemone.tech
         IdentityFile ~/.ssh/DefaultKey-ap-northeast-1.pem
         User ubuntu

    (pemは、AWSから貰ったものを使うだけ)

  3. "ssh sea-anemone.tech"でログインできる(はず)

 

2021/04,江端さんの技術メモ

/////////////////////////////////////////
//  gcc -g life_0813.c -o life_0813
/////////////////////////////////////////

#include <stdio.h>
#include <stdlib.h>

/// グローバル変数で強行する
struct date
{
  int day;
  int month;
  int year;
};

enum sex {woman, man};
enum marrige {unmarried, married, divorce, remarriage};
 

struct person {
  int age; //年齢
  enum sex sex;  // 性別
  enum marrige marrige;  // 成婚

  struct person *prev;  /* 前の構造体を示すポインタ */
  struct person *next;  /* 次の構造体を示すポインタ */
};



double men[100],women[100]; // 年齢別人口 平成22年データ 単位は1000人
double men_death_rate[100],women_death_rate[100];  //死亡率 平成22年データ
double men_unmarried_rate[100],women_unmarried_rate[100];  //未婚率 平成22年データ

double men_existance_matching_rate[100];	// 有配偶率 (平成22年)
double women_existance_matching_rate[100];	// 有配偶率 (平成22年)
// 初婚、再婚関係なく、その世代に対して。
// 結婚している比率

double men_divorce_rate[100]; // 有配偶離婚率
double women_divorce_rate[100]; // 有配偶離婚率


// ○ 結婚している人に対する離婚率
double men_remarrige_ratio[100];
double women_remarrige_ratio[100]; // 再婚率 (2010年)

int initial_data();// 死亡率 平成22年データ (資料  厚生労働省大臣官房統計情報部人口動態・保健統計課「人口動態統計」)							

void delete_person(
				  struct person **p_person,
				  struct person **p_first_person,
				  struct person **p_last_person)   // メモリを消す処理e
{
  struct person *temp_p_person;

  if (*p_first_person == *p_last_person){
	//printf("p_first_person == p_last_person\n");
	exit(0);
  }

  if (*p_person == *p_first_person){ // 最初の場合
	*p_first_person = (*p_person)->next;
	(*p_first_person)->prev = NULL;
	//printf("C1");
	free(*p_person);
	*p_person = *p_first_person;
  }
  else if (*p_person == *p_last_person){ //最後の場合
	*p_last_person = (*p_person)->prev;
	(*p_last_person)->next = NULL;
	//printf("C2");
	free(*p_person);
	*p_person = *p_last_person;
  }
  else {
	(*p_person)->next->prev = (*p_person)->prev;
	(*p_person)->prev->next = (*p_person)->next;
	temp_p_person = (*p_person)->prev; // 一つ前のポインタに退避
	//printf("C3");
	free(*p_person);

	*p_person = temp_p_person;
  }

}


population_counter(struct person *p_first_person)
{
  struct person *p_person;
  int count;

  p_person = p_first_person;  //最初の一人
  count = 0;
  while (p_person != NULL){
	count++;
	p_person = p_person->next;
  }
  //printf("count=%d \n", count);
}


int main ()
{
  int i, k, count;
  struct person *p_person, *p_prev_person, *p_next_person;
  struct person *p_first_person, *p_last_person;
  int women_pop, men_pop;
  double dd;


  // 日本国民一億人のデータを作る 

  //printf("checked -1.\r\n");

  initial_data();  // 初期データ入力

  //printf("checked 0.\r\n");

  srand(10); // 乱数のシード


  ////////////  現状データの入力 ////////////
  
  // 最初の一人(0人目)  99歳の女性と仮定する。
  p_person= (struct person *)malloc(sizeof(struct person));
  if(p_person == NULL) {
      printf("メモリが確保できません\n");
      exit(EXIT_FAILURE);
   }
  p_person->sex = woman;
  p_person->age = 99;


  p_first_person = p_person;  //最初の一人

  // (最後に)ポインタをリンクする
  p_person->prev = NULL;
  p_prev_person = p_person;

  for(i=99; i>=0; i--){
	women_pop = women[i] * 1000;
	men_pop = men[i] * 1000;

	for(k=0; k<women_pop; k++){
	  p_person= (struct person *)malloc(sizeof(struct person));
	  if(p_person == NULL) {
		printf("メモリが確保できません %d\n",i);
		exit(EXIT_FAILURE);
	  }
	  
	  p_person->sex = woman;
	  p_person->age = i;

	  // (最後に)ポインタをリンクする
	  p_prev_person->next = p_person;
	  p_person->prev = p_prev_person;
	  p_person->next = NULL;
	  p_prev_person = p_person;
	  
	}

	for(k=0; k<men_pop; k++){
	  p_person= (struct person *)malloc(sizeof(struct person));
	  if(p_person == NULL) {
		printf("メモリが確保できません %d\n",i);
		exit(EXIT_FAILURE);
	  }
	  
	  p_person->sex = man;
	  p_person->age = i;

	  // (最後に)ポインタをリンクする
	  p_prev_person->next = p_person;
	  p_person->prev = p_prev_person;
	  p_person->next = NULL;
	  p_prev_person = p_person;
	  
	}
  }
  p_last_person = p_person;



  //printf("checked 1.\n");

  // 既婚(離婚も含む)・未婚の入力 (乱数で入力する) (離婚人口も含む)
  p_person = p_first_person;  //最初の一人
  while (p_person != NULL){

	if (p_person->sex == woman){ // 女性の場合
	  if (women_unmarried_rate[p_person->age] >= rand()/32768.0){
		p_person->marrige = unmarried;
	  }
	  else {
		p_person->marrige = married;
	  }
	}
	else{// 男性の場合
	  if (men_unmarried_rate[p_person->age] >= rand()/32768.0){
		p_person->marrige = unmarried;
	  }
	  else {
		p_person->marrige = married;
	  }
	}
	p_person = p_person->next;
  }
  //printf("count=%d \n", count);

  // 離婚させる (ここは男女で分ける必要ないが、詳細データが手に入った時に反映)
  p_person = p_first_person;  //最初の一人
  while (p_person != NULL){

	if (p_person->sex == woman){ // 女性の場合
	  if ((p_person->marrige == married) || (p_person->marrige == remarriage)){ // 結婚している

		if( women_divorce_rate[p_person->age] >= rand()/32768.0){
		  p_person->marrige = divorce; // 離婚させる
		}
	  }
	}
	else{// 男性の場合
	  if ((p_person->marrige == married) || (p_person->marrige == remarriage)){ // 結婚している
		if( men_divorce_rate[p_person->age] >= rand()/32768.0){
		  p_person->marrige = divorce; // 離婚させる
		}
	  }
	}
	p_person = p_person->next;
  }

  // 再婚させる 

  // 離婚している人に対する再婚率 (に変換する式)
  //    = 
  // 再婚率 x その世代の人口数 / 離婚(×未婚、結婚)人口
  // としなければなない
  

  // 上記の解釈間違いの可能性あり


  // 離婚した人を再婚させる (ここは男女で分ける必要がある)

  p_person = p_first_person;  //最初の一人

  while (p_person != NULL){
	if (p_person->sex == woman){ // 女性の場合
	  if (p_person->marrige == divorce){ // 離婚している
		if( women_remarrige_ratio[p_person->age] >= rand()/32768.0){
		  p_person->marrige = remarriage; // 再婚させる
		}
	  }
	}
	else{// 男性の場合
	  if (p_person->marrige == divorce){ // 離婚している
		if( men_remarrige_ratio[p_person->age] >= rand()/32768.0){
		  p_person->marrige = remarriage; // 再婚させる
		}
	  }
	}
	p_person = p_person->next;
  }
		
 // (T.B.D.)
	
  //初期値チェックルーチン


#if 1
  p_person = p_first_person;  //最初の一人

  printf("性別,年齢,成婚\n");

  while (p_person != NULL){
	
	if (p_person->sex == woman)
	  printf("女性,");
	else
	  printf("男性,");

	printf("%d,",p_person->age);

	if (p_person->marrige == unmarried)
	  printf("未婚\n");
	else if (p_person->marrige == married)
	  printf("結婚\n");
	else if (p_person->marrige == divorce)
	  printf("離婚\n");
	else if (p_person->marrige == remarriage)
	  printf("再婚\n");
	
	p_person = p_person->next;
  }

  //printf("count=%d \n", count);

#endif


  //初期値チェックルーチン 終り

  ////////////  現状データの入力 終わり ////////////

  p_person = p_first_person;  //最初の一人

  count = 0;
  while (p_person != NULL){
	count++;
	p_person = p_person->next;
  }
  //printf("count=%d \n", count);

  // (1)100歳以上は、いない(死んだ)ことにする。
  //     → person->age が100になったらオブジェクトを開放

#if 0 
//時間計測の為、コメントアウト

  for(i=0; i<100; i++){//100年分を回す
	
	//printf("%d\n",i);
	
	p_person = p_first_person;  //最初の一人

	while (p_person != NULL){
	  p_person->age++;
	  if (p_person->age == 100){ //100歳以上は削除
		  delete_person(&p_person,&p_first_person,&p_last_person);
	  }
	  p_person = p_person->next;
	}

	population_counter(p_first_person);
  }

  
  p_person = p_first_person;  //最初の一人

  count = 0;
  while (p_person != NULL){
	count++;
	p_person = p_person->next;
  }
  //printf("count=%d \n", count);
  
#endif // 時間計測の為、コメントアウト

}



int initial_data()
{
	men[ 0]=549   ; men_death_rate[ 0]=0.0025   ;
	men[ 1]=535   ; men_death_rate[ 1]=0.0004   ;
	men[ 2]=535   ; men_death_rate[ 2]=0.0002   ;	
	men[ 3]=550   ; men_death_rate[ 3]=0.0002   ;	
	men[ 4]=548   ; men_death_rate[ 4]=0.0002   ;

	men[ 5]=544   ; men_death_rate[ 5]=0.0001   ;
	men[ 6]=542   ; men_death_rate[ 6]=0.0001   ;
	men[ 7]=562   ; men_death_rate[ 7]=0.0001   ;
	men[ 8]=574   ; men_death_rate[ 8]=0.0001   ;
	men[ 9]=589   ; men_death_rate[ 9]=0.0001   ;

	men[10]=597   ; men_death_rate[10]=0.0001   ;
	men[11]=604   ; men_death_rate[11]=0.0001   ;
	men[12]=604   ; men_death_rate[12]=0.0001   ;
	men[13]=613   ; men_death_rate[13]=0.0001   ;
	men[14]=610   ; men_death_rate[14]=0.0001   ;

	men[15]=607   ; men_death_rate[15]=0.0003   ;
	men[16]=627   ; men_death_rate[16]=0.0003   ;
	men[17]=632   ; men_death_rate[17]=0.0003   ;
	men[18]=621   ; men_death_rate[18]=0.0003   ;
	men[19]=631   ; men_death_rate[19]=0.0003   ;

	men[20]=623   ; men_death_rate[20]=0.0006   ;
	men[21]=632   ; men_death_rate[21]=0.0006   ;
	men[22]=648   ; men_death_rate[22]=0.0006   ;
	men[23]=668   ; men_death_rate[23]=0.0006   ;
	men[24]=683   ; men_death_rate[24]=0.0006   ;

	men[25]=697   ; men_death_rate[25]=0.0007   ;
	men[26]=723   ; men_death_rate[26]=0.0007   ;
	men[27]=745   ; men_death_rate[27]=0.0007   ;
	men[28]=754   ; men_death_rate[28]=0.0007   ;
	men[29]=754   ; men_death_rate[29]=0.0007   ;

	men[30]=764   ; men_death_rate[30]=0.0008   ;
	men[31]=797   ; men_death_rate[31]=0.0008   ;
	men[32]=818   ; men_death_rate[32]=0.0008   ;
	men[33]=852   ; men_death_rate[33]=0.0008   ;
	men[34]=873   ; men_death_rate[34]=0.0008   ;

	men[35]=917   ; men_death_rate[35]=0.0010   ;
	men[36]=960   ; men_death_rate[36]=0.0010   ;
	men[37]=1012  ; men_death_rate[37]=0.0010   ;
	men[38]=1028  ; men_death_rate[38]=0.0010   ;
	men[39]=1010  ; men_death_rate[39]=0.0010   ;

	men[40]=982   ; men_death_rate[40]=0.0015   ;
	men[41]=954   ; men_death_rate[41]=0.0015   ;
	men[42]=937   ; men_death_rate[42]=0.0015   ;
	men[43]=916   ; men_death_rate[43]=0.0015   ;
	men[44]=915   ; men_death_rate[44]=0.0015   ;

	men[45]=713   ; men_death_rate[45]=0.0024   ;
	men[46]=882   ; men_death_rate[46]=0.0024   ;
	men[47]=826   ; men_death_rate[47]=0.0024   ;
	men[48]=805   ; men_death_rate[48]=0.0024   ;
	men[49]=778   ; men_death_rate[49]=0.0024   ;

	men[50]=765   ; men_death_rate[50]=0.0038   ;
	men[51]=770   ; men_death_rate[51]=0.0038   ;
	men[52]=783   ; men_death_rate[52]=0.0038   ;
	men[53]=761   ; men_death_rate[53]=0.0038   ;
	men[54]=740   ; men_death_rate[54]=0.0038   ;

	men[55]=776   ; men_death_rate[55]=0.0063   ;
	men[56]=803   ; men_death_rate[56]=0.0063   ;
	men[57]=803   ; men_death_rate[57]=0.0063   ;
	men[58]=850   ; men_death_rate[58]=0.0063   ;
	men[59]=896   ; men_death_rate[59]=0.0063   ;

	men[60]=949   ; men_death_rate[60]=0.0093   ;
	men[61]=1018  ; men_death_rate[61]=0.0093   ;
	men[62]=1111  ; men_death_rate[62]=0.0093   ;
	men[63]=1099  ; men_death_rate[63]=0.0093   ;
	men[64]=1042  ; men_death_rate[64]=0.0093   ;

	men[65]=645   ; men_death_rate[65]=0.0146   ;
	men[66]=684   ; men_death_rate[66]=0.0146   ;
	men[67]=825   ; men_death_rate[67]=0.0146   ;
	men[68]=794   ; men_death_rate[68]=0.0146   ;
	men[69]=809   ; men_death_rate[69]=0.0146   ;

	men[70]=780   ; men_death_rate[70]=0.0227   ;
	men[71]=698   ; men_death_rate[71]=0.0227   ;
	men[72]=599   ; men_death_rate[72]=0.0227   ;
	men[73]=627   ; men_death_rate[73]=0.0227   ;
	men[74]=631   ; men_death_rate[74]=0.0227   ;

	men[75]=616   ; men_death_rate[75]=0.0396   ;
	men[76]=571   ; men_death_rate[76]=0.0396   ;
	men[77]=521   ; men_death_rate[77]=0.0396   ;
	men[78]=501   ; men_death_rate[78]=0.0396   ;
	men[79]=470   ; men_death_rate[79]=0.0396   ;

	men[80]=430   ; men_death_rate[80]=0.0705   ;
	men[81]=385   ; men_death_rate[81]=0.0705   ;
	men[82]=350   ; men_death_rate[82]=0.0705   ;
	men[83]=316   ; men_death_rate[83]=0.0705   ;
	men[84]=281   ; men_death_rate[84]=0.0705   ;

	men[85]=247   ; men_death_rate[85]=0.1200   ;
	men[86]=202   ; men_death_rate[86]=0.1200   ;
	men[87]=158   ; men_death_rate[87]=0.1200   ;
	men[88]=122   ; men_death_rate[88]=0.1200   ;
	men[89]=98    ; men_death_rate[89]=0.1200   ;

	men[90]=78    ; men_death_rate[90]=0.2025   ;
	men[91]=67    ; men_death_rate[91]=0.2025   ;
	men[92]=44    ; men_death_rate[92]=0.2025   ;
	men[93]=36    ; men_death_rate[93]=0.2025   ;
	men[94]=28    ; men_death_rate[94]=0.2025   ;

	men[95]=21    ; men_death_rate[95]=0.3188   ;
	men[96]=15    ; men_death_rate[96]=0.3188   ;
	men[97]=11    ; men_death_rate[97]=0.3188   ;
	men[98]=7     ; men_death_rate[98]=0.3188   ;
	men[99]=5     ; men_death_rate[99]=0.3188   ;

	women[ 0]=520; women_death_rate[ 0]=0.0021  ;
	women[ 1]=510; women_death_rate[ 1]=0.0004  ;
	women[ 2]=511; women_death_rate[ 2]=0.0002  ;
	women[ 3]=525; women_death_rate[ 3]=0.0001  ;
	women[ 4]=522; women_death_rate[ 4]=0.0001  ;

	women[ 5]=518; women_death_rate[ 5]=0.0001   ;
	women[ 6]=517; women_death_rate[ 6]=0.0001   ;
	women[ 7]=538; women_death_rate[ 7]=0.0001   ;
	women[ 8]=545; women_death_rate[ 8]=0.0001   ;
	women[ 9]=561; women_death_rate[ 9]=0.0001   ;

	women[10]=568; women_death_rate[10]=0.0001   ;
	women[11]=573; women_death_rate[11]=0.0001   ;
	women[12]=576; women_death_rate[12]=0.0001   ;
	women[13]=585; women_death_rate[13]=0.0001   ;
	women[14]=583; women_death_rate[14]=0.0001   ;

	women[15]=578; women_death_rate[15]=0.0002   ;
	women[16]=595; women_death_rate[16]=0.0002   ;
	women[17]=597; women_death_rate[17]=0.0002   ;
	women[18]=589; women_death_rate[18]=0.0002   ;
	women[19]=599; women_death_rate[19]=0.0002   ;

	women[20]=596; women_death_rate[20]=0.0003   ;
	women[21]=605; women_death_rate[21]=0.0003   ;
	women[22]=622; women_death_rate[22]=0.0003   ;
	women[23]=638; women_death_rate[23]=0.0003   ;
	women[24]=655; women_death_rate[24]=0.0003   ;

	women[25]=667; women_death_rate[25]=0.0003   ;
	women[26]=697; women_death_rate[26]=0.0003   ;
	women[27]=719; women_death_rate[27]=0.0003   ;
	women[28]=729; women_death_rate[28]=0.0003   ;
	women[29]=734; women_death_rate[29]=0.0003   ;

	women[30]=742; women_death_rate[30]=0.0004   ;
	women[31]=774; women_death_rate[31]=0.0004   ;
	women[32]=794; women_death_rate[32]=0.0004   ;
	women[33]=828; women_death_rate[33]=0.0004   ;
	women[34]=849; women_death_rate[34]=0.0004   ;

	women[35]=890; women_death_rate[35]=0.0006   ;
	women[36]=931; women_death_rate[36]=0.0006   ;
	women[37]=982; women_death_rate[37]=0.0006   ;
	women[38]=1001; women_death_rate[38]=0.0006   ;
	women[39]=981; women_death_rate[39]=0.0006   ;

	women[40]=958; women_death_rate[40]=0.0008   ;
	women[41]=931; women_death_rate[41]=0.0008   ;
	women[42]=920; women_death_rate[42]=0.0008   ;
	women[43]=902; women_death_rate[43]=0.0008   ;
	women[44]=898; women_death_rate[44]=0.0008   ;

	women[45]=705; women_death_rate[45]=0.0013   ;
	women[46]=872; women_death_rate[46]=0.0013   ;
	women[47]=815; women_death_rate[47]=0.0013   ;
	women[48]=798; women_death_rate[48]=0.0013   ;
	women[49]=772; women_death_rate[49]=0.0013   ;

	women[50]=760; women_death_rate[50]=0.0019   ;
	women[51]=768; women_death_rate[51]=0.0019   ;
	women[52]=783; women_death_rate[52]=0.0019   ;
	women[53]=765; women_death_rate[53]=0.0019   ;
	women[54]=744; women_death_rate[54]=0.0019   ;

	women[55]=783; women_death_rate[55]=0.0028   ;
	women[56]=810; women_death_rate[56]=0.0028   ;
	women[57]=813; women_death_rate[57]=0.0028   ;
	women[58]=868; women_death_rate[58]=0.0028   ;
	women[59]=918; women_death_rate[59]=0.0028   ;

	women[60]=975; women_death_rate[60]=0.0039   ;
	women[61]=1051; women_death_rate[61]=0.0039   ;
	women[62]=1152; women_death_rate[62]=0.0039   ;
	women[63]=1146; women_death_rate[63]=0.0039   ;
	women[64]=1090; women_death_rate[64]=0.0039   ;

	women[65]=685; women_death_rate[65]=0.0060   ;
	women[66]=741; women_death_rate[66]=0.0060   ;
	women[67]=903; women_death_rate[67]=0.0060   ;
	women[68]=875; women_death_rate[68]=0.0060   ;
	women[69]=899; women_death_rate[69]=0.0060   ;

	women[70]=873; women_death_rate[70]=0.0098   ;
	women[71]=793; women_death_rate[71]=0.0098   ;
	women[72]=690; women_death_rate[72]=0.0098   ;
	women[73]=738; women_death_rate[73]=0.0098   ;
	women[74]=755; women_death_rate[74]=0.0098   ;

	women[75]=753; women_death_rate[75]=0.0179   ;
	women[76]=718; women_death_rate[76]=0.0179   ;
	women[77]=675; women_death_rate[77]=0.0179   ;
	women[78]=671; women_death_rate[78]=0.0179   ;
	women[79]=646; women_death_rate[79]=0.0179   ;

	women[80]=614; women_death_rate[80]=0.0343   ;
	women[81]=573; women_death_rate[81]=0.0343   ;
	women[82]=547; women_death_rate[82]=0.0343   ;
	women[83]=515; women_death_rate[83]=0.0343   ;
	women[84]=482; women_death_rate[84]=0.0343   ;

	women[85]=454; women_death_rate[85]=0.0691   ;
	women[86]=405; women_death_rate[86]=0.0691   ;
	women[87]=349; women_death_rate[87]=0.0691   ;
	women[88]=313; women_death_rate[88]=0.0691   ;
	women[89]=276; women_death_rate[89]=0.0691   ;

	women[90]=236; women_death_rate[90]=0.1312   ;
	women[91]=213; women_death_rate[91]=0.1312   ;
	women[92]=146; women_death_rate[92]=0.1312   ;
	women[93]=128; women_death_rate[93]=0.1312   ;
	women[94]=106; women_death_rate[94]=0.1312   ;

	women[95]=87 ; women_death_rate[95]=0.2381   ;
	women[96]=63 ; women_death_rate[96]=0.2381   ;
	women[97]=49 ; women_death_rate[97]=0.2381   ;
	women[98]=35 ; women_death_rate[98]=0.2381   ;
	women[99]=25 ; women_death_rate[99]=0.2381   ;

	/////////////////////////////////////////////

	// 未婚率 (平成22年)

	men_unmarried_rate[ 0]=1.000   ;	
	men_unmarried_rate[ 1]=1.000   ;
	men_unmarried_rate[ 2]=1.000   ;
	men_unmarried_rate[ 3]=1.000   ;
	men_unmarried_rate[ 4]=1.000   ;

	men_unmarried_rate[ 5]=1.000   ;
	men_unmarried_rate[ 6]=1.000   ;
	men_unmarried_rate[ 7]=1.000   ;
	men_unmarried_rate[ 8]=1.000   ;
	men_unmarried_rate[ 9]=1.000   ;

	men_unmarried_rate[10]=1.000   ;
	men_unmarried_rate[11]=1.000   ;
	men_unmarried_rate[12]=1.000   ;
	men_unmarried_rate[13]=1.000   ;
	men_unmarried_rate[14]=1.000   ;

	men_unmarried_rate[15]=1.000   ;
	men_unmarried_rate[16]=1.000   ;
	men_unmarried_rate[17]=1.000   ;
	men_unmarried_rate[18]=0.975   ;
	men_unmarried_rate[19]=0.975   ;

	men_unmarried_rate[20]=0.910   ;
	men_unmarried_rate[21]=0.910   ;
	men_unmarried_rate[22]=0.910   ;
	men_unmarried_rate[23]=0.910   ;
	men_unmarried_rate[24]=0.910   ;

	men_unmarried_rate[25]=0.645   ;
	men_unmarried_rate[26]=0.645   ;
	men_unmarried_rate[27]=0.645   ;
	men_unmarried_rate[28]=0.645   ;
	men_unmarried_rate[29]=0.645   ;

	men_unmarried_rate[30]=0.413   ;
	men_unmarried_rate[31]=0.413   ;
	men_unmarried_rate[32]=0.413   ;
	men_unmarried_rate[33]=0.413   ;
	men_unmarried_rate[34]=0.413   ;

	men_unmarried_rate[35]=0.370   ;
	men_unmarried_rate[36]=0.370   ;
	men_unmarried_rate[37]=0.370   ;
	men_unmarried_rate[38]=0.370   ;
	men_unmarried_rate[39]=0.370   ;

	men_unmarried_rate[40]=0.229   ;
	men_unmarried_rate[41]=0.229   ;
	men_unmarried_rate[42]=0.229   ;
	men_unmarried_rate[43]=0.229   ;
	men_unmarried_rate[44]=0.229   ;

	men_unmarried_rate[45]=0.166   ;
	men_unmarried_rate[46]=0.166   ;
	men_unmarried_rate[47]=0.166   ;
	men_unmarried_rate[48]=0.166   ;
	men_unmarried_rate[49]=0.166   ;

	men_unmarried_rate[50]=0.189   ;
	men_unmarried_rate[51]=0.189   ;
	men_unmarried_rate[52]=0.189   ;
	men_unmarried_rate[53]=0.189   ;
	men_unmarried_rate[54]=0.189   ;

	men_unmarried_rate[55]=0.139   ;
	men_unmarried_rate[56]=0.139   ;
	men_unmarried_rate[57]=0.139   ;
	men_unmarried_rate[58]=0.139   ;
	men_unmarried_rate[59]=0.139   ;

	men_unmarried_rate[60]=0.068   ;
	men_unmarried_rate[61]=0.068   ;
	men_unmarried_rate[62]=0.068   ;
	men_unmarried_rate[63]=0.068   ;
	men_unmarried_rate[64]=0.068   ;

	men_unmarried_rate[65]=0.042   ;
	men_unmarried_rate[66]=0.042   ;
	men_unmarried_rate[67]=0.042   ;
	men_unmarried_rate[68]=0.042   ;
	men_unmarried_rate[69]=0.042   ;

	men_unmarried_rate[70]=0.015   ;
	men_unmarried_rate[71]=0.015   ;
	men_unmarried_rate[72]=0.015   ;
	men_unmarried_rate[73]=0.015   ;
	men_unmarried_rate[74]=0.015   ;

	men_unmarried_rate[75]=0.012   ;
	men_unmarried_rate[76]=0.012   ;
	men_unmarried_rate[77]=0.012   ;
	men_unmarried_rate[78]=0.012   ;
	men_unmarried_rate[79]=0.012   ;

	men_unmarried_rate[80]=0.012   ;
	men_unmarried_rate[81]=0.012   ;
	men_unmarried_rate[82]=0.012   ;
	men_unmarried_rate[83]=0.012   ;
	men_unmarried_rate[84]=0.012   ;

	men_unmarried_rate[85]=0.011   ;
	men_unmarried_rate[86]=0.011   ;
	men_unmarried_rate[87]=0.011   ;
	men_unmarried_rate[88]=0.011   ;
	men_unmarried_rate[89]=0.011   ;

	men_unmarried_rate[90]=0.011   ;
	men_unmarried_rate[91]=0.011   ;
	men_unmarried_rate[92]=0.011   ;
	men_unmarried_rate[93]=0.011   ;
	men_unmarried_rate[94]=0.011   ;

	men_unmarried_rate[95]=0.011   ;
	men_unmarried_rate[96]=0.011   ;
	men_unmarried_rate[97]=0.011   ;
	men_unmarried_rate[98]=0.011   ;
	men_unmarried_rate[99]=0.011   ;

	women_unmarried_rate[ 0]=1.000   ;	
	women_unmarried_rate[ 1]=1.000   ;	
	women_unmarried_rate[ 2]=1.000   ;	
	women_unmarried_rate[ 3]=1.000   ;	
	women_unmarried_rate[ 4]=1.000   ;	
	
	women_unmarried_rate[ 5]=1.000   ;	
	women_unmarried_rate[ 6]=1.000   ;	
	women_unmarried_rate[ 7]=1.000   ;	
	women_unmarried_rate[ 8]=1.000   ;	
	women_unmarried_rate[ 9]=1.000   ;	
	
	women_unmarried_rate[10]=1.000   ;	
	women_unmarried_rate[11]=1.000   ;	
	women_unmarried_rate[12]=1.000   ;	
	women_unmarried_rate[13]=1.000   ;	
	women_unmarried_rate[14]=1.000   ;	
	
	women_unmarried_rate[15]=1.000   ;
	women_unmarried_rate[16]=0.984   ;
	women_unmarried_rate[17]=0.984   ;
	women_unmarried_rate[18]=0.984   ;
	women_unmarried_rate[19]=0.984   ;
	
	women_unmarried_rate[20]=0.898   ;
	women_unmarried_rate[21]=0.898   ;
	women_unmarried_rate[22]=0.898   ;
	women_unmarried_rate[23]=0.898   ;
	women_unmarried_rate[24]=0.898   ;
	
	women_unmarried_rate[25]=0.607   ;
	women_unmarried_rate[26]=0.607   ;
	women_unmarried_rate[27]=0.607   ;
	women_unmarried_rate[28]=0.607   ;
	women_unmarried_rate[29]=0.607   ;
	
	women_unmarried_rate[30]=0.374   ; 
	women_unmarried_rate[31]=0.374   ; 
	women_unmarried_rate[32]=0.374   ; 
	women_unmarried_rate[33]=0.374   ; 
	women_unmarried_rate[34]=0.374   ; 
	
	women_unmarried_rate[35]=0.250   ;
	women_unmarried_rate[36]=0.250   ;
	women_unmarried_rate[37]=0.250   ;
	women_unmarried_rate[38]=0.250   ;
	women_unmarried_rate[39]=0.250   ;
	
	women_unmarried_rate[40]=0.224   ;
	women_unmarried_rate[41]=0.224   ;
	women_unmarried_rate[42]=0.224   ;
	women_unmarried_rate[43]=0.224   ;
	women_unmarried_rate[44]=0.224   ;
	
	women_unmarried_rate[45]=0.154   ; 
	women_unmarried_rate[46]=0.154   ; 
	women_unmarried_rate[47]=0.154   ; 
	women_unmarried_rate[48]=0.154   ; 
	women_unmarried_rate[49]=0.154   ; 
	
	women_unmarried_rate[50]=0.114   ;  
	women_unmarried_rate[51]=0.114   ;  
	women_unmarried_rate[52]=0.114   ;  
	women_unmarried_rate[53]=0.114   ;  
	women_unmarried_rate[54]=0.114   ;  
	
	women_unmarried_rate[55]=0.073   ;
	women_unmarried_rate[56]=0.073   ;
	women_unmarried_rate[57]=0.073   ;
	women_unmarried_rate[58]=0.073   ;
	women_unmarried_rate[59]=0.073   ;
	
	women_unmarried_rate[60]=0.055   ; 
	women_unmarried_rate[61]=0.055   ; 
	women_unmarried_rate[62]=0.055   ; 
	women_unmarried_rate[63]=0.055   ; 
	women_unmarried_rate[64]=0.055   ; 
	
	women_unmarried_rate[65]=0.053   ; 
	women_unmarried_rate[66]=0.053   ; 
	women_unmarried_rate[67]=0.053   ; 
	women_unmarried_rate[68]=0.053   ; 
	women_unmarried_rate[69]=0.053   ; 
	
	women_unmarried_rate[70]=0.033   ; 
	women_unmarried_rate[71]=0.033   ; 
	women_unmarried_rate[72]=0.033   ; 
	women_unmarried_rate[73]=0.033   ; 
	women_unmarried_rate[74]=0.033   ; 
	
	women_unmarried_rate[75]=0.044   ;
	women_unmarried_rate[76]=0.044   ;
	women_unmarried_rate[77]=0.044   ;
	women_unmarried_rate[78]=0.044   ;
	women_unmarried_rate[79]=0.044   ;
	
	women_unmarried_rate[80]=0.078   ;
	women_unmarried_rate[81]=0.078   ;
	women_unmarried_rate[82]=0.078   ;
	women_unmarried_rate[83]=0.078   ;
	women_unmarried_rate[84]=0.078   ;
	
	women_unmarried_rate[85]=0.033   ;
	women_unmarried_rate[86]=0.033   ;
	women_unmarried_rate[87]=0.033   ;
	women_unmarried_rate[88]=0.033   ;
	women_unmarried_rate[89]=0.033   ;
	
	women_unmarried_rate[90]=0.033   ;
	women_unmarried_rate[91]=0.033   ;
	women_unmarried_rate[92]=0.033   ;
	women_unmarried_rate[93]=0.033   ;
	women_unmarried_rate[94]=0.033   ;
	
	women_unmarried_rate[95]=0.033   ;
	women_unmarried_rate[96]=0.033   ;
	women_unmarried_rate[97]=0.033   ;
	women_unmarried_rate[98]=0.033   ;
	women_unmarried_rate[99]=0.033   ;
   
	// 有配偶率 (平成22年)

	// 初婚、再婚関係なく、その世代に対して。
	// 結婚している比率
	
	//国勢調査の男女別の有配偶者の数はなぜ違うのか

	men_existance_matching_rate[ 0]=0.000   ;	
	men_existance_matching_rate[ 1]=0.000   ;
	men_existance_matching_rate[ 2]=0.000   ;
	men_existance_matching_rate[ 3]=0.000   ;
	men_existance_matching_rate[ 4]=0.000   ;

	men_existance_matching_rate[ 5]=0.000   ;
	men_existance_matching_rate[ 6]=0.000   ;
	men_existance_matching_rate[ 7]=0.000   ;
	men_existance_matching_rate[ 8]=0.000   ;
	men_existance_matching_rate[ 9]=0.000   ;

	men_existance_matching_rate[10]=0.000   ;
	men_existance_matching_rate[11]=0.000   ;
	men_existance_matching_rate[12]=0.000   ;
	men_existance_matching_rate[13]=0.000   ;
	men_existance_matching_rate[14]=0.000   ;

	men_existance_matching_rate[15]=0.011   ;
	men_existance_matching_rate[16]=0.011   ;
	men_existance_matching_rate[17]=0.011   ;
	men_existance_matching_rate[18]=0.011   ;
	men_existance_matching_rate[19]=0.011   ;

	men_existance_matching_rate[20]=0.036   ;
	men_existance_matching_rate[21]=0.036   ;
	men_existance_matching_rate[22]=0.036   ;
	men_existance_matching_rate[23]=0.036   ;
	men_existance_matching_rate[24]=0.036   ;

	men_existance_matching_rate[25]=0.241   ;
	men_existance_matching_rate[26]=0.241   ;
	men_existance_matching_rate[27]=0.241   ;
	men_existance_matching_rate[28]=0.241   ;
	men_existance_matching_rate[29]=0.241   ;

	men_existance_matching_rate[30]=0.497   ;
	men_existance_matching_rate[31]=0.497   ;
	men_existance_matching_rate[32]=0.497   ;
	men_existance_matching_rate[33]=0.497   ;
	men_existance_matching_rate[34]=0.497   ;

	men_existance_matching_rate[35]=0.530   ;
	men_existance_matching_rate[36]=0.530   ;
	men_existance_matching_rate[37]=0.530   ;
	men_existance_matching_rate[38]=0.530   ;
	men_existance_matching_rate[39]=0.530   ;

	men_existance_matching_rate[40]=0.694   ;
	men_existance_matching_rate[41]=0.694   ;
	men_existance_matching_rate[42]=0.694   ;
	men_existance_matching_rate[43]=0.694   ;
	men_existance_matching_rate[44]=0.694   ;

	men_existance_matching_rate[45]=0.741   ;
	men_existance_matching_rate[46]=0.741   ;
	men_existance_matching_rate[47]=0.741   ;
	men_existance_matching_rate[48]=0.741   ;
	men_existance_matching_rate[49]=0.741   ;

	men_existance_matching_rate[50]=0.700   ;
	men_existance_matching_rate[51]=0.700   ;
	men_existance_matching_rate[52]=0.700   ;
	men_existance_matching_rate[53]=0.700   ;
	men_existance_matching_rate[54]=0.700   ;

	men_existance_matching_rate[55]=0.765   ;
	men_existance_matching_rate[56]=0.765   ;
	men_existance_matching_rate[57]=0.765   ;
	men_existance_matching_rate[58]=0.765   ;
	men_existance_matching_rate[59]=0.765   ;

	men_existance_matching_rate[60]=0.842   ;
	men_existance_matching_rate[61]=0.842   ;
	men_existance_matching_rate[62]=0.842   ;
	men_existance_matching_rate[63]=0.842   ;
	men_existance_matching_rate[64]=0.842   ;

	men_existance_matching_rate[65]=0.824   ;
	men_existance_matching_rate[66]=0.824   ;
	men_existance_matching_rate[67]=0.824   ;
	men_existance_matching_rate[68]=0.824   ;
	men_existance_matching_rate[69]=0.824   ;

	men_existance_matching_rate[70]=0.838   ;
	men_existance_matching_rate[71]=0.838   ;
	men_existance_matching_rate[72]=0.838   ;
	men_existance_matching_rate[73]=0.838   ;
	men_existance_matching_rate[74]=0.838   ;

	men_existance_matching_rate[75]=0.817   ;
	men_existance_matching_rate[76]=0.817   ;
	men_existance_matching_rate[77]=0.817   ;
	men_existance_matching_rate[78]=0.817   ;
	men_existance_matching_rate[79]=0.817   ;

	men_existance_matching_rate[80]=0.730   ;
	men_existance_matching_rate[81]=0.730   ;
	men_existance_matching_rate[82]=0.730   ;
	men_existance_matching_rate[83]=0.730   ;
	men_existance_matching_rate[84]=0.730   ;

	men_existance_matching_rate[85]=0.708   ;
	men_existance_matching_rate[86]=0.708   ;
	men_existance_matching_rate[87]=0.708   ;
	men_existance_matching_rate[88]=0.708   ;
	men_existance_matching_rate[89]=0.708   ;

	men_existance_matching_rate[90]=0.708   ;
	men_existance_matching_rate[91]=0.708   ;
	men_existance_matching_rate[92]=0.708   ;
	men_existance_matching_rate[93]=0.708   ;
	men_existance_matching_rate[94]=0.708   ;

	men_existance_matching_rate[95]=0.708   ;
	men_existance_matching_rate[96]=0.708   ;
	men_existance_matching_rate[97]=0.708   ;
	men_existance_matching_rate[98]=0.708   ;
	men_existance_matching_rate[99]=0.708   ;

	women_existance_matching_rate[ 0]=0.000   ;	
	women_existance_matching_rate[ 1]=0.000   ;	
	women_existance_matching_rate[ 2]=0.000   ;	
	women_existance_matching_rate[ 3]=0.000   ;	
	women_existance_matching_rate[ 4]=0.000   ;	
	
	women_existance_matching_rate[ 5]=0.000   ;	
	women_existance_matching_rate[ 6]=0.000   ;	
	women_existance_matching_rate[ 7]=0.000   ;	
	women_existance_matching_rate[ 8]=0.000   ;	
	women_existance_matching_rate[ 9]=0.000   ;	
	
	women_existance_matching_rate[10]=0.000   ;	
	women_existance_matching_rate[11]=0.000   ;	
	women_existance_matching_rate[12]=0.000   ;	
	women_existance_matching_rate[13]=0.000   ;	
	women_existance_matching_rate[14]=0.000   ;	
	
	women_existance_matching_rate[15]=0.008   ;
	women_existance_matching_rate[16]=0.008   ;
	women_existance_matching_rate[17]=0.008   ;
	women_existance_matching_rate[18]=0.008   ;
	women_existance_matching_rate[19]=0.008   ;
	
	women_existance_matching_rate[20]=0.052   ;
	women_existance_matching_rate[21]=0.052   ;
	women_existance_matching_rate[22]=0.052   ;
	women_existance_matching_rate[23]=0.052   ;
	women_existance_matching_rate[24]=0.052   ;
	
	women_existance_matching_rate[25]=0.312   ;
	women_existance_matching_rate[26]=0.312   ;
	women_existance_matching_rate[27]=0.312   ;
	women_existance_matching_rate[28]=0.312   ;
	women_existance_matching_rate[29]=0.312   ;
	
	women_existance_matching_rate[30]=0.569   ; 
	women_existance_matching_rate[31]=0.569   ; 
	women_existance_matching_rate[32]=0.569   ; 
	women_existance_matching_rate[33]=0.569   ; 
	women_existance_matching_rate[34]=0.569   ; 
	
	women_existance_matching_rate[35]=0.667   ;
	women_existance_matching_rate[36]=0.667   ;
	women_existance_matching_rate[37]=0.667   ;
	women_existance_matching_rate[38]=0.667   ;
	women_existance_matching_rate[39]=0.667   ;
	
	women_existance_matching_rate[40]=0.229   ;
	women_existance_matching_rate[41]=0.229   ;
	women_existance_matching_rate[42]=0.229   ;
	women_existance_matching_rate[43]=0.229   ;
	women_existance_matching_rate[44]=0.229   ;
	
	women_existance_matching_rate[45]=0.712   ; 
	women_existance_matching_rate[46]=0.712   ; 
	women_existance_matching_rate[47]=0.712   ; 
	women_existance_matching_rate[48]=0.712   ; 
	women_existance_matching_rate[49]=0.712   ; 
	
	women_existance_matching_rate[50]=0.755   ;  
	women_existance_matching_rate[51]=0.755   ;  
	women_existance_matching_rate[52]=0.755   ;  
	women_existance_matching_rate[53]=0.755   ;  
	women_existance_matching_rate[54]=0.755   ;  
	
	women_existance_matching_rate[55]=0.789   ;
	women_existance_matching_rate[56]=0.789   ;
	women_existance_matching_rate[57]=0.789   ;
	women_existance_matching_rate[58]=0.789   ;
	women_existance_matching_rate[59]=0.789   ;
	
	women_existance_matching_rate[60]=0.733   ; 
	women_existance_matching_rate[61]=0.733   ; 
	women_existance_matching_rate[62]=0.733   ; 
	women_existance_matching_rate[63]=0.733   ; 
	women_existance_matching_rate[64]=0.733   ; 
	
	women_existance_matching_rate[65]=0.663   ; 
	women_existance_matching_rate[66]=0.663   ; 
	women_existance_matching_rate[67]=0.663   ; 
	women_existance_matching_rate[68]=0.663   ; 
	women_existance_matching_rate[69]=0.663   ; 
	
	women_existance_matching_rate[70]=0.650   ; 
	women_existance_matching_rate[71]=0.650   ; 
	women_existance_matching_rate[72]=0.650   ; 
	women_existance_matching_rate[73]=0.650   ; 
	women_existance_matching_rate[74]=0.650   ; 
	
	women_existance_matching_rate[75]=0.462   ;
	women_existance_matching_rate[76]=0.462   ;
	women_existance_matching_rate[77]=0.462   ;
	women_existance_matching_rate[78]=0.462   ;
	women_existance_matching_rate[79]=0.462   ;
	
	women_existance_matching_rate[80]=0.326   ;
	women_existance_matching_rate[81]=0.326   ;
	women_existance_matching_rate[82]=0.326   ;
	women_existance_matching_rate[83]=0.326   ;
	women_existance_matching_rate[84]=0.326   ;
	
	women_existance_matching_rate[85]=0.093   ;
	women_existance_matching_rate[86]=0.093   ;
	women_existance_matching_rate[87]=0.093   ;
	women_existance_matching_rate[88]=0.093   ;
	women_existance_matching_rate[89]=0.093   ;
	
	women_existance_matching_rate[90]=0.093   ;
	women_existance_matching_rate[91]=0.093   ;
	women_existance_matching_rate[92]=0.093   ;
	women_existance_matching_rate[93]=0.093   ;
	women_existance_matching_rate[94]=0.093   ;
	
	women_existance_matching_rate[95]=0.093   ;
	women_existance_matching_rate[96]=0.093   ;
	women_existance_matching_rate[97]=0.093   ;
	women_existance_matching_rate[98]=0.093   ;
	women_existance_matching_rate[99]=0.093   ;

	//有配偶離婚率  Divorce rates for married population
	// 平成22年データ
	// ○ 結婚している人に対する離婚率
	// × 人口に対する離婚率

	men_divorce_rate[0] = 0.0000 ;//結婚できないから、
	men_divorce_rate[1] = 0.0000 ;//離婚もできない
	men_divorce_rate[2] = 0.0000 ;
	men_divorce_rate[3] = 0.0000 ;
	men_divorce_rate[4] = 0.0000 ;

	men_divorce_rate[5] = 0.0000 ;
	men_divorce_rate[6] = 0.0000 ;
	men_divorce_rate[7] = 0.0000 ;
	men_divorce_rate[8] = 0.0000 ;
	men_divorce_rate[9] = 0.0000 ;

	men_divorce_rate[10] = 0.0000 ;
	men_divorce_rate[11] = 0.0000 ;
	men_divorce_rate[12] = 0.0000 ;
	men_divorce_rate[13] = 0.0000 ;
	men_divorce_rate[14] = 0.0000 ;  

	men_divorce_rate[15] = 0.0000 ;
	men_divorce_rate[16] = 0.0000 ;
	men_divorce_rate[17] = 0.0000 ;
	men_divorce_rate[18] = 0.4809 ;
	men_divorce_rate[19] = 0.4809 ;

	men_divorce_rate[20] = 0.4705 ;
	men_divorce_rate[21] = 0.4705 ;
	men_divorce_rate[22] = 0.4705 ;
	men_divorce_rate[23] = 0.4705 ;
	men_divorce_rate[24] = 0.4705 ;

	men_divorce_rate[25] = 0.2283 ;
	men_divorce_rate[26] = 0.2283 ;
	men_divorce_rate[27] = 0.2283 ;
	men_divorce_rate[28] = 0.2283 ;
	men_divorce_rate[29] = 0.2283 ;

	men_divorce_rate[30] = 0.1521 ;
	men_divorce_rate[31] = 0.1521 ;
	men_divorce_rate[32] = 0.1521 ;
	men_divorce_rate[33] = 0.1521 ;
 	men_divorce_rate[34] = 0.1521 ;

 	men_divorce_rate[35] = 0.1165 ;
 	men_divorce_rate[36] = 0.1165 ;
 	men_divorce_rate[37] = 0.1165 ;
 	men_divorce_rate[38] = 0.1165 ;
 	men_divorce_rate[39] = 0.1165 ;

 	men_divorce_rate[40] = 0.0939 ;
 	men_divorce_rate[41] = 0.0939 ;
 	men_divorce_rate[42] = 0.0939 ;
 	men_divorce_rate[43] = 0.0939 ;
 	men_divorce_rate[44] = 0.0939 ;

 	men_divorce_rate[45] = 0.0703 ;
 	men_divorce_rate[46] = 0.0703 ;
 	men_divorce_rate[47] = 0.0703 ;
 	men_divorce_rate[48] = 0.0703 ;
 	men_divorce_rate[49] = 0.0703 ;

 	men_divorce_rate[50] = 0.0495 ;
 	men_divorce_rate[51] = 0.0495 ;
 	men_divorce_rate[52] = 0.0495 ;
 	men_divorce_rate[53] = 0.0495 ;
 	men_divorce_rate[54] = 0.0495 ;

 	men_divorce_rate[55] = 0.0309 ;
 	men_divorce_rate[56] = 0.0309 ;
 	men_divorce_rate[57] = 0.0309 ;
 	men_divorce_rate[58] = 0.0309 ;
 	men_divorce_rate[59] = 0.0309 ;

 	men_divorce_rate[60] = 0.0194 ;
 	men_divorce_rate[61] = 0.0194 ;
 	men_divorce_rate[62] = 0.0194 ;
 	men_divorce_rate[63] = 0.0194 ;
 	men_divorce_rate[64] = 0.0194 ;

 	men_divorce_rate[65] = 0.0110 ;
 	men_divorce_rate[66] = 0.0110 ;
 	men_divorce_rate[67] = 0.0110 ;
 	men_divorce_rate[68] = 0.0110 ;
 	men_divorce_rate[69] = 0.0110 ;

 	men_divorce_rate[70] = 0.0040 ;
 	men_divorce_rate[71] = 0.0040 ;
 	men_divorce_rate[72] = 0.0040 ;
 	men_divorce_rate[73] = 0.0040 ;
 	men_divorce_rate[74] = 0.0040 ;

 	men_divorce_rate[75] = 0.0040 ;
 	men_divorce_rate[76] = 0.0040 ;
 	men_divorce_rate[77] = 0.0040 ;
 	men_divorce_rate[78] = 0.0040 ;
 	men_divorce_rate[79] = 0.0040 ;

 	men_divorce_rate[80] = 0.0040 ;
 	men_divorce_rate[81] = 0.0040 ;
 	men_divorce_rate[82] = 0.0040 ;
 	men_divorce_rate[83] = 0.0040 ;
 	men_divorce_rate[84] = 0.0040 ;

 	men_divorce_rate[85] = 0.0040 ;
 	men_divorce_rate[86] = 0.0040 ;
 	men_divorce_rate[87] = 0.0040 ;
 	men_divorce_rate[88] = 0.0040 ;
 	men_divorce_rate[89] = 0.0040 ;

 	men_divorce_rate[90] = 0.0040 ;
 	men_divorce_rate[91] = 0.0040 ;
 	men_divorce_rate[92] = 0.0040 ;
 	men_divorce_rate[93] = 0.0040 ;
 	men_divorce_rate[94] = 0.0040 ;

 	men_divorce_rate[95] = 0.0040 ;
 	men_divorce_rate[96] = 0.0040 ;
 	men_divorce_rate[97] = 0.0040 ;
 	men_divorce_rate[98] = 0.0040 ;
 	men_divorce_rate[99] = 0.0040 ;

	women_divorce_rate[0] = 0.0000 ;//結婚できないから、
	women_divorce_rate[1] = 0.0000 ;//離婚もできない
	women_divorce_rate[2] = 0.0000 ;
	women_divorce_rate[3] = 0.0000 ;
	women_divorce_rate[4] = 0.0000 ;

	women_divorce_rate[5] = 0.0000 ;
	women_divorce_rate[6] = 0.0000 ;
	women_divorce_rate[7] = 0.0000 ;
	women_divorce_rate[8] = 0.0000 ;
	women_divorce_rate[9] = 0.0000 ;

	women_divorce_rate[10] = 0.0000 ;
	women_divorce_rate[11] = 0.0000 ;
	women_divorce_rate[12] = 0.0000 ;
	women_divorce_rate[13] = 0.0000 ;
	women_divorce_rate[14] = 0.0000 ;  

	women_divorce_rate[15] = 0.0000 ;
	women_divorce_rate[16] = 0.8274 ;
	women_divorce_rate[17] = 0.8274 ;
	women_divorce_rate[18] = 0.8274 ;
	women_divorce_rate[19] = 0.8274 ;

	women_divorce_rate[20] = 0.4834 ;
	women_divorce_rate[21] = 0.4834 ;
	women_divorce_rate[22] = 0.4834 ;
	women_divorce_rate[23] = 0.4834 ;
	women_divorce_rate[24] = 0.4834 ;

	women_divorce_rate[25] = 0.2288 ;
	women_divorce_rate[26] = 0.2288 ;
	women_divorce_rate[27] = 0.2288 ;
	women_divorce_rate[28] = 0.2288 ;
	women_divorce_rate[29] = 0.2288 ;

	women_divorce_rate[30] = 0.1480 ;
	women_divorce_rate[31] = 0.1480 ;
	women_divorce_rate[32] = 0.1480 ;
	women_divorce_rate[33] = 0.1480 ;
 	women_divorce_rate[34] = 0.1480 ;

 	women_divorce_rate[35] = 0.1090 ;
 	women_divorce_rate[36] = 0.1090 ;
 	women_divorce_rate[37] = 0.1090 ;
 	women_divorce_rate[38] = 0.1090 ;
 	women_divorce_rate[39] = 0.1090 ;

 	women_divorce_rate[40] = 0.0833 ;
 	women_divorce_rate[41] = 0.0833 ;
 	women_divorce_rate[42] = 0.0833 ;
 	women_divorce_rate[43] = 0.0833 ;
 	women_divorce_rate[44] = 0.0833 ;

 	women_divorce_rate[45] = 0.0560 ;
 	women_divorce_rate[46] = 0.0560 ;
 	women_divorce_rate[47] = 0.0560 ;
 	women_divorce_rate[48] = 0.0560 ;
 	women_divorce_rate[49] = 0.0560 ;

 	women_divorce_rate[50] = 0.0322 ;
 	women_divorce_rate[51] = 0.0322 ;
 	women_divorce_rate[52] = 0.0322 ;
 	women_divorce_rate[53] = 0.0322 ;
 	women_divorce_rate[54] = 0.0322 ;

 	women_divorce_rate[55] = 0.0172 ;
 	women_divorce_rate[56] = 0.0172 ;
 	women_divorce_rate[57] = 0.0172 ;
 	women_divorce_rate[58] = 0.0172 ;
 	women_divorce_rate[59] = 0.0172 ;

 	women_divorce_rate[60] = 0.0113 ;
 	women_divorce_rate[61] = 0.0113 ;
 	women_divorce_rate[62] = 0.0113 ;
 	women_divorce_rate[63] = 0.0113 ;
 	women_divorce_rate[64] = 0.0113 ;

 	women_divorce_rate[65] = 0.0073 ;
 	women_divorce_rate[66] = 0.0073 ;
 	women_divorce_rate[67] = 0.0073 ;
 	women_divorce_rate[68] = 0.0073 ;
 	women_divorce_rate[69] = 0.0073 ;

 	women_divorce_rate[70] = 0.0028 ;
 	women_divorce_rate[71] = 0.0028 ;
 	women_divorce_rate[72] = 0.0028 ;
 	women_divorce_rate[73] = 0.0028 ;
 	women_divorce_rate[74] = 0.0028 ;

 	women_divorce_rate[75] = 0.0028 ;
 	women_divorce_rate[76] = 0.0028 ;
 	women_divorce_rate[77] = 0.0028 ;
 	women_divorce_rate[78] = 0.0028 ;
 	women_divorce_rate[79] = 0.0028 ;

 	women_divorce_rate[80] = 0.0028 ;
 	women_divorce_rate[81] = 0.0028 ;
 	women_divorce_rate[82] = 0.0028 ;
 	women_divorce_rate[83] = 0.0028 ;
 	women_divorce_rate[84] = 0.0028 ;

 	women_divorce_rate[85] = 0.0028 ;
 	women_divorce_rate[86] = 0.0028 ;
 	women_divorce_rate[87] = 0.0028 ;
 	women_divorce_rate[88] = 0.0028 ;
 	women_divorce_rate[89] = 0.0028 ;

 	women_divorce_rate[90] = 0.0028 ;
 	women_divorce_rate[91] = 0.0028 ;
 	women_divorce_rate[92] = 0.0028 ;
 	women_divorce_rate[93] = 0.0028 ;
 	women_divorce_rate[94] = 0.0028 ;

 	women_divorce_rate[95] = 0.0028 ;
 	women_divorce_rate[96] = 0.0028 ;
 	women_divorce_rate[97] = 0.0028 ;
 	women_divorce_rate[98] = 0.0028 ;
 	women_divorce_rate[99] = 0.0028 ;


	// 再婚率 (2010年)

	// × 離婚している人に対する再婚率
	// ○ 世代人口(未婚、結婚、離婚関係なし)に対する再婚率
	
	// ということで、計算式に注意しなければならない。
	//  (というか、なんで、最初からそういう数値にしないんだ!)

	// 離婚している人に対する再婚率 (に変換する式)
	//    = 
	// 再婚率 x その世代の人口数 / 離婚(×未婚、結婚)人口
	// としなければなない

	//表6-6 性,年齢(5歳階級)別再婚率:1930~2010年	
	//(‰) 
	//年  齢	2010年

	men_remarrige_ratio[0] = 0.0000;
	men_remarrige_ratio[1] = 0.0000;
	men_remarrige_ratio[2] = 0.0000;
	men_remarrige_ratio[3] = 0.0000;
	men_remarrige_ratio[4] = 0.0000;

	men_remarrige_ratio[5] = 0.0000;
	men_remarrige_ratio[6] = 0.0000;
	men_remarrige_ratio[7] = 0.0000;
	men_remarrige_ratio[8] = 0.0000;
	men_remarrige_ratio[9] = 0.0000;

	men_remarrige_ratio[10] = 0.0000;
	men_remarrige_ratio[11] = 0.0000;
	men_remarrige_ratio[12] = 0.0000;
	men_remarrige_ratio[13] = 0.0000;
	men_remarrige_ratio[14] = 0.0000;

	men_remarrige_ratio[15] = 0.0000;
	men_remarrige_ratio[16] = 0.0000;
	men_remarrige_ratio[17] = 0.0000;
	men_remarrige_ratio[18] = 0.0001;
	men_remarrige_ratio[19] = 0.0001;

	men_remarrige_ratio[20] = 0.0048;
	men_remarrige_ratio[21] = 0.0048;
	men_remarrige_ratio[22] = 0.0048;
	men_remarrige_ratio[23] = 0.0048;
	men_remarrige_ratio[24] = 0.0048;

	men_remarrige_ratio[25] = 0.0226;
	men_remarrige_ratio[26] = 0.0226;
	men_remarrige_ratio[27] = 0.0226;
	men_remarrige_ratio[28] = 0.0226;
	men_remarrige_ratio[29] = 0.0226;

	men_remarrige_ratio[30] = 0.0448;
	men_remarrige_ratio[31] = 0.0448;
	men_remarrige_ratio[32] = 0.0448;
	men_remarrige_ratio[33] = 0.0448;
	men_remarrige_ratio[34] = 0.0448; 

	men_remarrige_ratio[35] = 0.0476;
	men_remarrige_ratio[36] = 0.0476;
	men_remarrige_ratio[37] = 0.0476;
	men_remarrige_ratio[38] = 0.0476;
	men_remarrige_ratio[39] = 0.0476;

	men_remarrige_ratio[40] = 0.0371;
	men_remarrige_ratio[41] = 0.0371;
	men_remarrige_ratio[42] = 0.0371;
	men_remarrige_ratio[43] = 0.0371;
	men_remarrige_ratio[44] = 0.0371; 

	men_remarrige_ratio[45] = 0.0261;
	men_remarrige_ratio[46] = 0.0261;
	men_remarrige_ratio[47] = 0.0261;
	men_remarrige_ratio[48] = 0.0261;
	men_remarrige_ratio[49] = 0.0261;

	men_remarrige_ratio[50] = 0.0180;
	men_remarrige_ratio[51] = 0.0180;
	men_remarrige_ratio[52] = 0.0180;
	men_remarrige_ratio[53] = 0.0180;
	men_remarrige_ratio[54] = 0.0180;

	men_remarrige_ratio[55] = 0.0123;
	men_remarrige_ratio[56] = 0.0123;
	men_remarrige_ratio[57] = 0.0123;
	men_remarrige_ratio[58] = 0.0123;
	men_remarrige_ratio[59] = 0.0123;

	men_remarrige_ratio[60] = 0.0091;
	men_remarrige_ratio[61] = 0.0091;
	men_remarrige_ratio[62] = 0.0091;
	men_remarrige_ratio[63] = 0.0091;
	men_remarrige_ratio[64] = 0.0091;

	men_remarrige_ratio[65] = 0.0056;
	men_remarrige_ratio[66] = 0.0056;
	men_remarrige_ratio[67] = 0.0056;
	men_remarrige_ratio[68] = 0.0056;
	men_remarrige_ratio[69] = 0.0056;

	men_remarrige_ratio[70] = 0.0025;
	men_remarrige_ratio[71] = 0.0025;
	men_remarrige_ratio[72] = 0.0025;
	men_remarrige_ratio[73] = 0.0025;
	men_remarrige_ratio[74] = 0.0025;

	men_remarrige_ratio[75] = 0.0025;
	men_remarrige_ratio[76] = 0.0025;
	men_remarrige_ratio[77] = 0.0025;
	men_remarrige_ratio[78] = 0.0025;
	men_remarrige_ratio[79] = 0.0025;

	men_remarrige_ratio[80] = 0.0025;
	men_remarrige_ratio[81] = 0.0025;
	men_remarrige_ratio[82] = 0.0025;
	men_remarrige_ratio[83] = 0.0025;
	men_remarrige_ratio[84] = 0.0025;

	men_remarrige_ratio[85] = 0.0025;
	men_remarrige_ratio[86] = 0.0025;
	men_remarrige_ratio[87] = 0.0025;
	men_remarrige_ratio[88] = 0.0025;
	men_remarrige_ratio[89] = 0.0025;

	men_remarrige_ratio[90] = 0.0025;
	men_remarrige_ratio[91] = 0.0025;
	men_remarrige_ratio[92] = 0.0025;
	men_remarrige_ratio[93] = 0.0025;
	men_remarrige_ratio[94] = 0.0025;

	men_remarrige_ratio[95] = 0.0025;
	men_remarrige_ratio[96] = 0.0025;
	men_remarrige_ratio[97] = 0.0025;
	men_remarrige_ratio[98] = 0.0025;
	men_remarrige_ratio[99] = 0.0025;

	women_remarrige_ratio[0] = 0.0000;
	women_remarrige_ratio[1] = 0.0000;
	women_remarrige_ratio[2] = 0.0000;
	women_remarrige_ratio[3] = 0.0000;
	women_remarrige_ratio[4] = 0.0000;

	women_remarrige_ratio[5] = 0.0000;
	women_remarrige_ratio[6] = 0.0000;
	women_remarrige_ratio[7] = 0.0000;
	women_remarrige_ratio[8] = 0.0000;
	women_remarrige_ratio[9] = 0.0000;

	women_remarrige_ratio[10] = 0.0000;
	women_remarrige_ratio[11] = 0.0000;
	women_remarrige_ratio[12] = 0.0000;
	women_remarrige_ratio[13] = 0.0000;
	women_remarrige_ratio[14] = 0.0000;

	women_remarrige_ratio[15] = 0.0000;
	women_remarrige_ratio[16] = 0.0004;
	women_remarrige_ratio[17] = 0.0004;
	women_remarrige_ratio[18] = 0.0004;
	women_remarrige_ratio[19] = 0.0004;
	
	women_remarrige_ratio[20] = 0.0103;
	women_remarrige_ratio[21] = 0.0103;
	women_remarrige_ratio[22] = 0.0103;
	women_remarrige_ratio[23] = 0.0103;
	women_remarrige_ratio[24] = 0.0103;

	women_remarrige_ratio[25] = 0.0345;
	women_remarrige_ratio[26] = 0.0345;
	women_remarrige_ratio[27] = 0.0345;
	women_remarrige_ratio[28] = 0.0345;
	women_remarrige_ratio[29] = 0.0345;

	women_remarrige_ratio[30] = 0.0501;
	women_remarrige_ratio[31] = 0.0501;
	women_remarrige_ratio[32] = 0.0501;
	women_remarrige_ratio[33] = 0.0501;
	women_remarrige_ratio[34] = 0.0501;

	women_remarrige_ratio[35] = 0.0438;
	women_remarrige_ratio[36] = 0.0438;
	women_remarrige_ratio[37] = 0.0438;
	women_remarrige_ratio[38] = 0.0438;
	women_remarrige_ratio[39] = 0.0438;

	women_remarrige_ratio[40] = 0.0269;
	women_remarrige_ratio[41] = 0.0269;
	women_remarrige_ratio[42] = 0.0269;
	women_remarrige_ratio[43] = 0.0269;
	women_remarrige_ratio[44] = 0.0269;

	women_remarrige_ratio[45] = 0.0176; 
	women_remarrige_ratio[46] = 0.0176; 
	women_remarrige_ratio[47] = 0.0176; 
	women_remarrige_ratio[48] = 0.0176; 
	women_remarrige_ratio[49] = 0.0176; 

	women_remarrige_ratio[50] = 0.0115; 
	women_remarrige_ratio[51] = 0.0115; 
	women_remarrige_ratio[52] = 0.0115; 
	women_remarrige_ratio[53] = 0.0115; 
	women_remarrige_ratio[54] = 0.0115; 

	women_remarrige_ratio[55] = 0.0069; 
	women_remarrige_ratio[56] = 0.0069; 
	women_remarrige_ratio[57] = 0.0069; 
	women_remarrige_ratio[58] = 0.0069; 
	women_remarrige_ratio[59] = 0.0069; 

	women_remarrige_ratio[60] = 0.0043; 
	women_remarrige_ratio[61] = 0.0043; 
	women_remarrige_ratio[62] = 0.0043;  
	women_remarrige_ratio[63] = 0.0043;  
	women_remarrige_ratio[64] = 0.0043;
  
	women_remarrige_ratio[65] = 0.0025;
	women_remarrige_ratio[66] = 0.0025;
	women_remarrige_ratio[67] = 0.0025;
	women_remarrige_ratio[68] = 0.0025;
	women_remarrige_ratio[69] = 0.0025;

	women_remarrige_ratio[70] = 0.0007;
	women_remarrige_ratio[71] = 0.0007;
	women_remarrige_ratio[72] = 0.0007;
	women_remarrige_ratio[73] = 0.0007;
	women_remarrige_ratio[74] = 0.0007;

	women_remarrige_ratio[75] = 0.0007;
	women_remarrige_ratio[76] = 0.0007;
	women_remarrige_ratio[77] = 0.0007;
	women_remarrige_ratio[78] = 0.0007;
	women_remarrige_ratio[79] = 0.0007;

	women_remarrige_ratio[80] = 0.0007;
	women_remarrige_ratio[81] = 0.0007;
	women_remarrige_ratio[82] = 0.0007;
	women_remarrige_ratio[83] = 0.0007;
	women_remarrige_ratio[84] = 0.0007;

	women_remarrige_ratio[85] = 0.0007;
	women_remarrige_ratio[86] = 0.0007;
	women_remarrige_ratio[87] = 0.0007;
	women_remarrige_ratio[88] = 0.0007;
	women_remarrige_ratio[89] = 0.0007;

	women_remarrige_ratio[90] = 0.0007;
	women_remarrige_ratio[91] = 0.0007;
	women_remarrige_ratio[92] = 0.0007;
	women_remarrige_ratio[93] = 0.0007;
	women_remarrige_ratio[94] = 0.0007;

	women_remarrige_ratio[95] = 0.0007;
	women_remarrige_ratio[96] = 0.0007;
	women_remarrige_ratio[97] = 0.0007;
	women_remarrige_ratio[98] = 0.0007;
	women_remarrige_ratio[99] = 0.0007;

}

2021/04,江端さんの技術メモ

Windows10 - 仮想メモリの設定・サイズ変更(カスタマイズ)

に記載された通りの設定をした後

この設定を以下のようにしてみた。

でもって、再起動

なんか、物理メモリの量が減っているし、こころなし、重くなったような気がしたので、元に戻しました。

 

2021/04,江端さんの忘備録

HDDレコーダに録画しておいた、映画"Fukushima 50"を、毎日10分間くらいに分けて見続けて、先日、終了しました。

The other day, I finished watching the movie "Fukushima 50," which I had recorded on my HDD recorder, in 10-minute segments every day.

良い映画だったと思います。

I think it was a good movie.

特に、『事故現場(原子炉)に接近しなければ事故を収拾できないのに、接近することができない』という ――

In particular, the fact that "they needed to get close to the accident site (reactor) to get it under control, but we could not"

そういう、やっかいなモノに頼って、私達は生きているという事実に気がつくことは、大切だと思います。

I think it is important to realize the fact that we depend on such troublesome things in our lives.

その他、色々思うところはあるのですが、本日は、差し控えさせて頂きたいと思います。

I have many other thoughts on the subject, but I would like to refrain from discussing them today.

とはいえ、『フクシマ50』を見て、事故のことがわかったような気になってしまうのはもったいない。

Nevertheless, it would be a shame to let "Fukushima 50" make you think that you understand the accident.

ここは一つ、私が、「原発事故オリエンテーション」を試みたいと思います。

I would like to attempt a "nuclear accident orientation" here.

-----

先ずは、定番、三原順先生の漫画『Die Energie 5.2☆11.8』

First up is the classic manga "Die Energie 5.2☆11.8" by Jun Mihara.

そして、これまで何度も引用させていただいた、原子力発電所の襲撃方法の教本、高村薫さんの『神の火』です。

And then there is Kaoru Takamura's "God's Fire", a teaching book on how to attack nuclear power plants, which I have quoted many times before.

さらに、原子炉への物理攻撃では、東野圭吾さんの『天空の蜂』です。

And for a physical attack on a nuclear reactor, it's Keigo Higashino's "Bees in the Sky".

ここまで読んで頂ければ、『原発を人質に取られた瞬間、私たちの負けが確定する』ということは、比較的簡単に分かります。

If you have read them it is relatively easy to understand that 'the moment the nuclear power plant is taken hostage, we are sure to lose.

------

原発の事故対応の話では、

According to "response to the nuclear accident",

私のコラムを読んで頂き、

You read my column, and ,

総括は、やはり、船橋洋一さんの『カウントダウン・メルトダウン』です。

the summary is also "Countdown Meltdown" by Yoichi Funabashi.

もちろん、それ以外にも、「軽水炉型と重水炉型の違い」とか「高速増殖炉もんじゅ」の話など、挙げればキリがありませんので、とりあえず、これくらいで十分です。

Of course, there are many other things I could mention, such as the difference between light water reactor type and heavy water reactor type, or the story of the fast breeder reactor Monju, but the above contents are enough for now.

------

で、実は、ここまでが前置きです。

So, actually, that's all the preamble.

ここ数日間で、大騒ぎになっている(という感じは、正直あまりしませんが)

In the last few days, there's been a lot of fuss (although I honestly don't feel like there's much fuss).

―― 柏崎刈羽原子力発電所で、一体、何があったのか

"What the hell happened at the Kashiwazaki-Kariwa Nuclear Power Plant?"

―― 原子力規制委員会は、何であんなに激怒しているのか

"Why is the Nuclear Regulatory Commission so furious?"

ここからが本論です。

This is where it starts.

(続く)

(To be continued)