2024,江端さんの技術メモ

3次元を取り扱うDBSCANプログラム

このプログラムでは、同一座標は1つの座標として纏められてしまって、異なるユーザの座標として取り扱ってくれません。

これに対応するために修正したプログラムは以下の通りです。

// ~/tomioka_school/src/trip_school/dbscan_3d_2.go



package main

import (
	"fmt"
	"math"
)

// Point represents a 3D point with coordinates x, y, and t
type Point struct {
	User string
	X, Y, T float64
}

// DistanceTo calculates the Euclidean distance between two 3D points
func (p Point) DistanceTo(other Point) float64 {
	dx := p.X - other.X
	dy := p.Y - other.Y
	dt := p.T - other.T
	return math.Sqrt(dx*dx + dy*dy + dt*dt)
}

// Cluster represents a cluster of points
type Cluster struct {
	Points []Point
}

// DBSCAN performs density-based clustering of 3D points
func DBSCAN(points []Point, epsilon float64, minPts int) []Cluster {
	var clusters []Cluster
	var visited = make(map[string]bool)

	for _, point := range points {
		pointKey := fmt.Sprintf("%s,%f,%f,%f", point.User, point.X, point.Y, point.T)
		if visited[pointKey] {
			continue
		}
		visited[pointKey] = true

		neighbours := getNeighbours(points, point, epsilon)
		if len(neighbours) < minPts {
			continue
		}

		var clusterPoints []Point
		expandCluster(&clusterPoints, points, visited, point, neighbours, epsilon, minPts)
		clusters = append(clusters, Cluster{Points: clusterPoints})
	}

	return clusters
}

// getNeighbours returns all points within distance epsilon of the given point
func getNeighbours(points []Point, point Point, epsilon float64) []Point {
	var neighbours []Point
	for _, other := range points {
		if point.DistanceTo(other) <= epsilon {
			neighbours = append(neighbours, other)
		}
	}
	return neighbours
}

// expandCluster expands the cluster from the given point
func expandCluster(cluster *[]Point, points []Point, visited map[string]bool, point Point, neighbours []Point, epsilon float64, minPts int) {
	*cluster = append(*cluster, point)
	for _, neighbour := range neighbours {
		neighbourKey := fmt.Sprintf("%s,%f,%f,%f", neighbour.User, neighbour.X, neighbour.Y, neighbour.T)
		if !visited[neighbourKey] {
			visited[neighbourKey] = true
			neighbourNeighbours := getNeighbours(points, neighbour, epsilon)
			if len(neighbourNeighbours) >= minPts {
				expandCluster(cluster, points, visited, neighbour, neighbourNeighbours, epsilon, minPts)
			}
		}
	}
}

func main() {
	points := []Point{
		{"A", 1, 2, 0},
		{"A", 1.5, 1.8, 1},
		{"A", 5, 8, 2},
		{"A", 8, 8, 3},
		{"A", 1, 0.6, 4},
		{"A", 9, 11, 5},
		{"A", 8, 2, 6},
		{"A", 10, 2, 7},
		{"A", 9, 3, 8},
		{"B", 1, 2, 0},
		{"B", 1.5, 1.8, 1},
		{"B", 5, 8, 2},
		{"B", 8, 8, 3},
		{"B", 1, 0.6, 4},
		{"B", 9, 11, 5},
		{"B", 8, 2, 6},
		{"B", 10, 2, 7},
		{"B", 9, 3, 8},
		{"C", 1, 2, 0},
		{"C", 1.5, 1.8, 1},
		{"C", 5, 8, 2},
		{"C", 8, 8, 3},
		{"C", 1, 0.6, 4},
		{"C", 9, 11, 5},
		{"C", 8, 2, 6},
		{"C", 10, 2, 7},
		{"C", 9, 3, 8},
	}

	// epsilon := 3.0
	// minPts := 5

	epsilon := 2.5
	minPts := 5


	clusters := DBSCAN(points, epsilon, minPts)
	fmt.Println("Combined Clusters:")
	for i, cluster := range clusters {
		fmt.Printf("Cluster %d:\n", i+1)
		for _, point := range cluster.Points {
			fmt.Printf("  (%s, %.2f, %.2f, %.2f)\n", point.User, point.X, point.Y, point.T)
		}
	}
}

出力結果は以下の通りです。
C:\Users\ebata\tomioka_school\src\trip_school>go run dbscan_3d_2.go
Combined Clusters:
Cluster 1:
(A, 1.00, 2.00, 0.00)
(A, 1.50, 1.80, 1.00)
(B, 1.00, 2.00, 0.00)
(B, 1.50, 1.80, 1.00)
(C, 1.00, 2.00, 0.00)
(C, 1.50, 1.80, 1.00)
Cluster 2:
(A, 8.00, 2.00, 6.00)
(A, 10.00, 2.00, 7.00)
(A, 9.00, 3.00, 8.00)
(B, 8.00, 2.00, 6.00)
(B, 10.00, 2.00, 7.00)
(B, 9.00, 3.00, 8.00)
(C, 8.00, 2.00, 6.00)
(C, 10.00, 2.00, 7.00)
(C, 9.00, 3.00, 8.00)

2024,江端さんの技術メモ

// NormalizeCoordinates 京急富岡駅を基準として正規化された緯度と経度を返す関数
// C:\Users\ebata\tomioka_school\src\trip_school\NormalizeCoordinates.go

package main

import (
	"fmt"
	"math"
)


func NormalizeCoordinates(referenceLat, referenceLng, lat, lng float64) (float64, float64) {
	// 1度あたりの緯度経度のメートル換算
	metersPerDegreeLat := 111319.9 // 緯度1度あたりのメートル数
	metersPerDegreeLng := 111319.9 * math.Cos(referenceLat*(math.Pi/180.0)) // 経度1度あたりのメートル数

	// 緯度と経度の差を計算
	deltaLat := lat - referenceLat
	deltaLng := lng - referenceLng

	// 正規化された緯度と経度を計算
	normalizedLat := deltaLat * metersPerDegreeLat / 100.0
	normalizedLng := deltaLng * metersPerDegreeLng / 100.0

	return normalizedLat, normalizedLng
}

func main() {
	// 京急富岡駅の緯度経度

	keikyuTomiokaLat := 35.367131726654705
	keikyuTomiokaLng := 139.62988318023088

	// 確認用の緯度経度(富岡駅のバス停)

	lat := 35.36605614545459
	lng := 139.6295094178281

	// 緯度経度の正規化
	normalizedLat, normalizedLng := NormalizeCoordinates(keikyuTomiokaLat, keikyuTomiokaLng, lat, lng)

	fmt.Printf("正規化された緯度: %.6f\n", normalizedLat)
	fmt.Printf("正規化された経度: %.6f\n", normalizedLng)
}

2024,江端さんの技術メモ

// NormalizeTime 2つの日時文字列の時間差を秒単位で計算し、600秒を1として正規化する関数
// C:\Users\ebata\tomioka_school\src\trip_school\NormalizeTime.go

package main

import (
	"fmt"
	"time"
)

func NormalizeTime(timeStr1, timeStr2 string) float64 {
	layout := "2006-01-02 15:04:05"
	t1, err := time.Parse(layout, timeStr1)
	if err != nil {
		fmt.Println("Error parsing time string 1:", err)
		return 0
	}

	t2, err := time.Parse(layout, timeStr2)
	if err != nil {
		fmt.Println("Error parsing time string 2:", err)
		return 0
	}

	duration := t2.Sub(t1).Seconds()
	normalizedDuration := duration / 600.0

	return normalizedDuration
}

func main() {
	timeStr1 := "2024-01-01 00:00:00"
	timeStr2 := "2024-02-11 23:45:00"

	normalized := NormalizeTime(timeStr1, timeStr2)
	fmt.Println("正規化された時間差:", normalized)
}

2024,江端さんの技術メモ

/*
	c:\users\ebata\dscan\dscan3.go

	DBSCANアルゴリズムを実装し、3次元空間のデータ(x、y、t)をクラスタリングするシンプルなプログラムです。
	このプログラムでは、各データポイントは3次元座標(x、y、t)で表され、距離の計算にはユークリッド距離を使用します。

	DBSCANをk-meansの違いで説明します。

	DBSCAN(Density-Based Spatial Clustering of Applications with Noise)とk-meansは、クラスタリングアルゴリズムですが、そのアプローチや動作原理にはいくつかの違いがあります。

	(1)クラスタリング方法:

	- DBSCAN: 密度ベースのクラスタリングアルゴリズムであり、データポイントの密度に基づいてクラスタを形成します。各点は、一定の距離(ε、epsilon)内に最小限の近傍点数(minPts)が存在する場合、その点を中心としたクラスタが形成されます。
	- k-means: 距離ベースのクラスタリングアルゴリズムであり、データポイントの距離に基づいてクラスタを形成します。クラスタの数(k)を事前に指定し、各点を最も近いセントロイド(クラスタの中心)に割り当てます。

	(2)クラスタの形状:

	- DBSCAN: クラスタの形状は任意であり、密度の高い領域に基づいて形成されます。したがって、DBSCANは非凸形状のクラスタを処理できます。
	- k-means: クラスタの形状は円形(球形)であり、各クラスタのセントロイドからの距離に基づいて決定されます。したがって、k-meansは凸形状のクラスタを前提としています。

	(3)ハイパーパラメータ:

	- DBSCAN: ε(epsilon)とminPtsの2つのハイパーパラメータを必要とします。εは近傍点の距離の閾値を定義し、minPtsはクラスタと見なすための最小の近傍点数を指定します
	- k-means: クラスタの数(k)を指定する必要があります。

	(4)ノイズの処理:

	- DBSCAN: ノイズポイントを自動的に検出し、外れ値として扱います。密度が低い領域に存在するポイントは、任意のクラスタに割り当てられず、ノイズとして扱われます。
	-k-means: 外れ値やノイズの処理を明示的に行いません。各点は必ずどれかのクラスタに割り当てられます。

	 要するに、DBSCANは密度ベースのアルゴリズムであり、任意の形状のクラスタを検出し、ノイズを処理する能力があります。一方、k-meansは距離ベースのアルゴリズムであり、クラスタの形状が円形であることを前提としています。


*/

package main

import (
	"fmt"
	"math"
)

// Point represents a 3D point with coordinates x, y, and t
type Point struct {
	X, Y, T float64
}

// DistanceTo calculates the Euclidean distance between two 3D points
func (p Point) DistanceTo(other Point) float64 {
	dx := p.X - other.X
	dy := p.Y - other.Y
	dt := p.T - other.T
	return math.Sqrt(dx*dx + dy*dy + dt*dt)
}

// Cluster represents a cluster of points
type Cluster struct {
	Points []Point
}

// DBSCAN performs density-based clustering of 3D points
func DBSCAN(points []Point, epsilon float64, minPts int) []Cluster {
	var clusters []Cluster
	var visited = make(map[Point]bool)

	for _, point := range points {
		if visited[point] {
			continue
		}
		visited[point] = true

		neighbours := getNeighbours(points, point, epsilon)
		if len(neighbours) < minPts {
			continue
		}

		var clusterPoints []Point
		expandCluster(&clusterPoints, points, visited, point, neighbours, epsilon, minPts)
		clusters = append(clusters, Cluster{Points: clusterPoints})
	}

	return clusters
}

// getNeighbours returns all points within distance epsilon of the given point
func getNeighbours(points []Point, point Point, epsilon float64) []Point {
	var neighbours []Point
	for _, other := range points {
		if point.DistanceTo(other) <= epsilon {
			neighbours = append(neighbours, other)
		}
	}
	return neighbours
}

// expandCluster expands the cluster from the given point
func expandCluster(cluster *[]Point, points []Point, visited map[Point]bool, point Point, neighbours []Point, epsilon float64, minPts int) {
	*cluster = append(*cluster, point)
	for _, neighbour := range neighbours {
		if !visited[neighbour] {
			visited[neighbour] = true
			neighbourNeighbours := getNeighbours(points, neighbour, epsilon)
			if len(neighbourNeighbours) >= minPts {
				expandCluster(cluster, points, visited, neighbour, neighbourNeighbours, epsilon, minPts)
			}
		}
		// Add neighbour to cluster if not already in another cluster
		var isInCluster bool
		for _, c := range *cluster {
			if c == neighbour {
				isInCluster = true
				break
			}
		}
		if !isInCluster {
			*cluster = append(*cluster, neighbour)
		}
	}
}

func main() {
	// Example usage
	points := []Point{
		{X: 1, Y: 2, T: 0},
		{X: 1.5, Y: 1.8, T: 1},
		{X: 5, Y: 8, T: 2},
		{X: 8, Y: 8, T: 3},
		{X: 1, Y: 0.6, T: 4},
		{X: 9, Y: 11, T: 5},
		{X: 8, Y: 2, T: 6},
		{X: 10, Y: 2, T: 7},
		{X: 9, Y: 3, T: 8},
	}

	epsilon := 3.0
	minPts := 2

	clusters := DBSCAN(points, epsilon, minPts)
	for i, cluster := range clusters {
		fmt.Printf("Cluster %d:\n", i+1)
		for _, point := range cluster.Points {
			fmt.Printf("  (%.2f, %.2f, %.2f)\n", point.X, point.Y, point.T)
		}
	}
}

2024,江端さんの技術メモ

を起動したら、

となることがあるので、この対応方法をメモしておきます。

https://app.mindmanager.com/ と入力(#my-filesはつけない)

ファイルが表示されるので、これを選択。

表示されるようになる。


のプロパティを開いて新しいURLをコピペする。

以上

2024,江端さんの技術メモ

本プログラムは、

Webサーバに繋っているブラウザが、全部いなくなったことを確認するプログラム

を拡張したものです。index.htmlは、このページに記載されているものを、そのまま、使って下さい。

こちらのプログラムでは、Webサーバに繋っているブラウザが、全部いなくなったと確認できた場合(30秒後)に、url = "http://localhost:8000/cancelAllVideoStreamGround"へメッセージを渡すプログラムです。

デバッグの為に使っていたコメントが残っていますので、適当に削除して下さい。

# c:\users\ebata\webMonitor.py
# https://wp.kobore.net/%e6%b1%9f%e7%ab%af%e3%81%95%e3%82%93%e3%81%ae%e6%8a%80%e8%a1%93%e3%83%a1%e3%83%a2/post-12475/を参照のこと

import threading
import time
import requests
import sys
from flask import Flask, request, jsonify
from requests.exceptions import Timeout
from flask_cors import CORS


app = Flask(__name__)

CORS(app)  # すべてのリクエストに対してCORSを有効にする

last_heartbeat_time = 0
lock = threading.Lock()

def send_notification():
    url = "http://localhost:8000/cancelAllVideoStreamGround"
    try:
        response = requests.post(url, timeout=3)
        response.raise_for_status()
        print("Notification sent successfully.")
        sys.stdout.flush()  # 標準出力をフラッシュする
    except Timeout:
        print("Error: Timeout while sending notification")
    except requests.exceptions.RequestException as e:
        print(f"Error sending notification: {e}")

def check_heartbeat():
    global last_heartbeat_time
    while True:
        current_time = time.time()
        print("ct:",current_time)
        print("lht:",last_heartbeat_time)
        diff = current_time - last_heartbeat_time
        print("diff:",diff)
        with lock:
            if current_time - last_heartbeat_time > 30:
                send_notification()
                last_heartbeat_time = current_time
        time.sleep(1)

@app.route('/heartbeat', methods=['POST'])
def receive_heartbeat():
    print("pass receive_heartbeat()")
    global last_heartbeat_time
    data = request.get_json()
    print(f"Received heartbeat: {data}")
    sys.stdout.flush()  # 標準出力をフラッシュする
    with lock:
        last_heartbeat_time = time.time()
        print("lht_2:",last_heartbeat_time)
    # data = request.get_json()
    # print(f"Received heartbeat: {data}")
    # sys.stdout.flush()  # 標準出力をフラッシュする
    return jsonify({"status": "OK"})

if __name__ == "__main__":
    heartbeat_thread = threading.Thread(target=check_heartbeat)
    heartbeat_thread.start()
    app.run(host='0.0.0.0', port=3000)

私用のコメント
(1)receive_heartbeat():と receive_heartbeat()を同時に走らせる為に、スレッド化しなければならなくなった → で Ctrl-Cで止められなくなったので、ちょっと困っている(が、シェル画面ごと落せばいいので、現在はそうしている)

(2)url = "http://localhost:8000/cancelAllVideoStreamGround" からの時間がもたつく場合には、Timeoutを設定すると良いかもしれない。send_notification()を丸ごと差し替えると、こんな感じ。

def send_notification():
    url = "http://localhost:8000/cancelAllVideoStreamGround"
    try:
        response = requests.post(url, timeout=3)
        response.raise_for_status()
        print("Notification sent successfully.")
        sys.stdout.flush()  # 標準出力をフラッシュする
    except Timeout:
        print("Error: Timeout while sending notification")
    except requests.exceptions.RequestException as e:
        print(f"Error sending notification: {e}")

(3)Webブラウザは、バックエンドに置いておくと、Heatbeatを出力しないことがあるので、常にアクティブにしておく必要があります(バックエンドのままにしておくと、cancelAllVideoStreamGroundが動き出します)

以上

2024,江端さんの技術メモ

「まだChatGPTを使ってない人は『人生を悔い改めた方がいい』」 ―― と言った、ソフトバンクの孫社長に申し上げます。『いらんこと言うな』と。

にも書いていますが、

『当初、私は、ChatGPT(対話型AIアシスタント))、Grammerly(英語文章構成サービス), Deepl(翻訳サービス)を、無料で使ってきたのですが、私のそのサービスの利用頻度は、無料の範囲を越えてしまい、全て有料の会員となっています』

で、ここにAmazon Lightsailがあって、さらに、さくらインターネットのサービス(kobore.net)が入って、当然、ドメイン名の使用料も含まれていて、もう、これは、IT/AI搾取と称呼してもしても良いのではないかと思います。

で、先程、GitHub Copilot(10ドル/月)にも入りました ―― 貢いでいる対象を考えると「ホスト/ホステスに貢いだ方が楽しそう」です。金額の規模感は違いますが。

ジュニアに質問しにくいシニアにとっては、十分ペイする「お助けサービス」ではあるのですが ―― 私の人生、ハレがない とは思います。

それはさておき


先程まで、GitHub Copilotをvscodeにアドインしたが、tabキーを押しても提案を採用できないという問題に悩まされていました。

参考にさせて頂いたのは、こちら(https://mindtech.jp/?p=2330)のページです。

上記の"承諾する Tab"の部分をマウスでクリックすれば、確定はできるのですが、そんなコーディング作業、かったるくてやっていられません。

私の方も、やはり、Awesome Emacs Keymap と、vscode-emacs-indent が悪さをしていたようです。

これらを無効にした後、vscodeを再立ち上げしたら、コード確定ができるようにはなりましたが、当然ですが、emacsのキーバインドが使えなくなりました。しかし、私にはEmacsの環境が使えないコーディング環境は耐えられそうにありません(体が矯正不能)。

で、ちょっと試しに、Awesome Emacs Keymap を無効して、vscodeを再立ち上げして、GitHub Copilotを起動している状態で、Awesome Emacs Keymap を再び有効にしてみたら、両立に成功しているようです(すぐにボロが出るかもしれませんが)。

とりあえず、メモとして残しおきます。

またコケたら、こちらのメモに追記します。

2024,江端さんの技術メモ

ChatGPTと相談しながら、fastapiの起動時にコマンドを起動する方法を試していたのですが、上手く動かない(最初のコマンドでロックしてしまう)ので、起動したまま、そのまま放置するコード(プロセスを落したければ、コマンドから自力でkillコマンドで落す必要ある)にしました。

import subprocess
from fastapi import FastAPI

app = FastAPI()

# 各コマンドを実行する関数
def run_command(command):
    try:
        # バックグラウンドでプロセスを実行
        subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, close_fds=True)
    except Exception as e:
        print(f"コマンド '{command}' の実行中にエラーが発生しました: {str(e)}")

# 各コマンドを実行
commands = [
    "sudo socat udp-listen:38089,reuseaddr,fork udp:192.168.3.153:38089",
    "sudo socat udp-listen:38090,reuseaddr,fork udp:192.168.3.153:38090",
    "sudo socat udp-listen:38091,reuseaddr,fork udp:192.168.3.153:38091"
]

for command in commands:
    run_command(command)

@app.on_event("startup")
async def startup_event():
    print("Application startup complete.")

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)

 

2024,江端さんの技術メモ

import asyncio
from fastapi import FastAPI

app = FastAPI()

async def hello_timer():
    while True:
        print("hello")
        await asyncio.sleep(10)  # 10秒待機

@app.on_event("startup")
async def startup_event():
    # FastAPIアプリケーションの起動時にタイマーを開始
    asyncio.create_task(hello_timer())

@app.get("/")
async def get_hello():
    return {"message": "hello"}

2024,江端さんの技術メモ

/*
C:\Users\ebata\yamaguchi\src_light

■このサンプルプログラムのキモ
(1)座標を入力して一番近いpostGISのノードIDを検知して、ダイクストラ計算を行うこと
(2)ユーザ心理を計算するファジィ推論を行うこと
が入っているプログラムである。

■自動計算を実施するバッチ、dummy.batの内容は以下の通り
go run light-sim.go data/mod_20220522holyday_visitor.csv data/new_20220522holyday_visitor.csv
go run light-sim.go data/mod_20220521holyday_visitor.csv data/new_20220521holyday_visitor.csv
go run light-sim.go data/mod_20220522holyday.csv data/new_20220522holyday.csv
go run light-sim.go data/mod_20220518weekday.csv data/new_20220518weekday.csv

■その入力用のcsvファイルの一つである、"data/mod_20220522holyday_visitor.csv"の内容は以下の通り
34.172891,131.456346,34.182418,131.474987,21
34.163801,131.444142,34.164454,131.449142,62
34.158856,131.435881,34.164727,131.431189,52
(中略)
34.146351,131.461154,34.167045,131.448468,20
34.145639,131.449237,34.149603,131.432828,29

■"data/bike_stations.csv"の中身
index,station,address,lat,lon,initial_stock,max_stock
1,null,null,34.102543,131.392639,20,20
2,null,null,34.102543,131.392639,20,20
3,null,null,34.102543,131.392639,20,20
4,山口県庁前バス停,山口市春日町2086-4,34.183621,131.471688,20,20
5,null,null,34.102543,131.392639,20,20
6,山口市役所 駐輪場,山口市亀山町2-1,34.178056,131.474204,20,20
7,一の坂川交通交流広場,山口市中河原7-1,34.17960577,131.4783006,20,20
8,null,null,34.102543,131.392639,20,20
9,コープやまぐちこことどうもん店 駐輪場,山口市道場門前1-1-18,34.174234,131.474885,20,20
10,山口駅 駐輪場,山口市惣太夫町288-9,34.172219,131.480013,20,20
11,山口市教育委員会 駐輪場,山口市中央5-14-22,34.170346,131.46915,20,20
12,null,null,34.102543,131.392639,20,20
13,ファミリーマート山口泉都町店,山口市泉都町9-2,34.167346,131.462048,20,20
14,防長苑,山口市熊野町4-29,34.167204,131.45973,20,20
15,null,null,34.102543,131.392639,20,20
16,ホテルニュータナカ,山口市湯田温泉2-6-24,34.163937,131.456115,20,20
17,null,null,34.102543,131.392639,20,20
18,湯田温泉駅 駐輪場,山口市今井町146-6,34.159954,131.459967,20,20
19,アルク平川店,山口市平井724-1,34.152742,131.464199,20,20
20,山口大学(正門),山口市吉田1677-1,34.149852,131.466214,20,20
21,小郡総合支所 駐輪場,山口市小郡下郷609番地1,34.102543,131.392639,20,20
22,KDDI維新ホール 駐輪場,山口市小郡令和1丁目1番地,34.09368,131.394,20,20
23,風の並木通り(新山口駅南口側),山口市小郡金町1-1付近,34.092322,131.397667,20,20
24,平成公園 駐車場内,山口市小郡平成町3-1,34.088168,131.401698,20,20
25,null,null,34.102543,131.392639,20,20
26,アルク小郡店,山口市小郡下郷2273番地1,34.097135,131.391295,20,20
27,null,null,34.102543,131.392639,20,20


*/
package main

import (
	"database/sql"
	"encoding/csv"
	"fmt"
	"log"

	"os"
	"strconv"

	_ "github.com/lib/pq"
)

// 自転車の型
type BikeParam struct {
	id            int // 自転車の識別番号
	destinationId int // 出発座標番号(*1)
	arrivalId     int // 到着座標番号

	// (*1)
	// 名前がdestination(目的地)となっているのは、バスがユーザを迎えに行き、載せた時点が「出発」扱いであった名残。
	// 自転車の場合は迎えに行く動作が無いので、名称変更が望ましい。

}

// 座標情報
type LocInfo struct {
	Lng    float64 // 経度
	Lat    float64 // 緯度
	Source int     // 地図DBのID
}

// 自転車の拠点
type BikeStation struct {
	location     LocInfo // 拠点の位置
	initialStock int     // 最初に配置する自転車の台数
	stationName  string  // 拠点の名称
}

// ステーションからの自転車の出入り
type StationStock struct {
	outgoing int
	incoming int
}

var stationstock [40]StationStock

const STATIONS_PATH string = "data/bike_stations.csv"

// 拠点情報を読み込み、BikeStation型の配列を返す
func getStationInfo(dbMap *sql.DB) []BikeStation {
	// ファイルをオープン
	csvFile, err := os.Open(STATIONS_PATH)
	if err != nil {
		log.Fatal(err)
	}
	defer csvFile.Close()

	// CSVファイルの中身を読み込み
	r := csv.NewReader(csvFile)
	rows, err := r.ReadAll()
	if err != nil {
		log.Fatal(err)
	}

	stationInfo := []BikeStation{} // 出力変数

	// 行ごとに
	for i, row := range rows {
		if i == 0 {
			continue // CSVのヘッダー行を無視
		}
		lat, err := strconv.ParseFloat(row[3], 64)
		if err != nil {
			log.Fatal(err)
		}
		lng, err := strconv.ParseFloat(row[4], 64)
		if err != nil {
			log.Fatal(err)
		}
		initialStockVal, err := strconv.Atoi(row[5])
		if err != nil {
			log.Fatal(err)
		}
		stationNameVal := row[1]

		// CSV読み込み時点の座標のログ(地図DBによって補正する前の座標)
		//log.Println("csv read result:", lng, lat, initialStock)

		// 地図DBを参照することによって、ステーションの位置をノードの位置にする
		source, lngModified, latModified := fixPosition(dbMap, lng, lat)
		loc := LocInfo{
			Lng:    lngModified,
			Lat:    latModified,
			Source: source,
		}

		// 読み込めていることの確認ログ
		//log.Println("Station", (i - 1), lngModified, latModified, initialStock, source)

		bikeStation := BikeStation{
			location:     loc,
			initialStock: initialStockVal,
			stationName:  stationNameVal,
		}
		stationInfo = append(stationInfo, bikeStation)
	}
	return stationInfo
}

// Scan用の仮変数
var source int
var longitude float64
var latitude float64
var dist float64

// 指定した座標に近いDB上の座標を取得
func fixPosition(db *sql.DB, _x1, _y1 float64) (int, float64, float64) {

	upperLimitMeter := 1500.0 // 近傍ノードの上限を1500 mに設定
	str := fmt.Sprintf(
		// 修正前: ways (道) の中から最近傍を取得
		// "SELECT source, x1 AS longitude, y1 AS latitude, ST_Distance('SRID=4326;POINT(%v %v)'::GEOGRAPHY, the_geom) AS dist FROM ways WHERE ST_DWithin(the_geom, ST_GeographyFromText('SRID=4326;POINT(%v %v)'), %.1f) ORDER BY dist LIMIT 1",
		// 修正後: ways_vertices_pgr (点座標) の中から最近傍を取得
		"SELECT id AS source, lon AS longitude, lat AS latitude, ST_Distance('SRID=4326;POINT(%v %v)'::GEOGRAPHY, the_geom) AS dist FROM ways_vertices_pgr WHERE ST_DWithin(the_geom, ST_GeographyFromText('SRID=4326;POINT(%v %v)'), %.1f) ORDER BY dist LIMIT 1",
		_x1, _y1, _x1, _y1, upperLimitMeter,
	)

	//fmt.Println(str)

	rows, err := db.Query(str)
	if err != nil {
		log.Fatal(err)
	}
	defer rows.Close()

	foundGoodMapNode := false

	for rows.Next() {
		foundGoodMapNode = true
		if err := rows.Scan(&source, &longitude, &latitude, &dist); err != nil {
			fmt.Println(err)
		}
		//fmt.Println(source, longitude, latitude, dist)
	}

	if !foundGoodMapNode {
		log.Println("Warning: in func fixPosition: Good Map Node not found for query point (",
			_x1, ",", _y1, ")")
	}

	return source, longitude, latitude
}

/*
func getShortestDistanceToBikeStation(dbMap *sql.DB, node int) int {

	StationId := -1
	distance := 1000000.0

	for i := 0; i < 2; i++ {
		rowsDijkstra, errDijkstra := dbMap.Query(
			"SELECT seq,source, target, x1, y1, x2, y2, agg_cost FROM pgr_dijkstra('SELECT gid as id, source, target, length_m as cost FROM ways', $1::bigint , $2::bigint , directed:=false) a INNER JOIN ways b ON (a.edge = b.gid) ORDER BY seq",
			node,

			Station[i].Node)
		if errDijkstra != nil {
			log.Fatal(errDijkstra)
		}
		defer rowsDijkstra.Close()

		var agg_cost float64

		for rowsDijkstra.Next() {
			var x1, y1, x2, y2 float64
			var seq, source, target int

			err := rowsDijkstra.Scan(&seq, &source, &target, &x1, &y1, &x2, &y2, &agg_cost)
			if err != nil {
				fmt.Println(err)
			}
		}

		if distance > agg_cost {
			distance = agg_cost
			StationId = i
		}
	}
	return StationId
}
*/

// 江端修正版
func getDijkstraPath(dbMap *sql.DB, locInfoStart, locInfoGoal LocInfo) ([]LocInfo, float64) {
	//log.Println("getDijkstraPath", locInfoStart, locInfoGoal)

	var path []LocInfo // 経路 (返り値の一つ目)
	var totalDistanceKm float64

	rowsDijkstra, errDijkstra := dbMap.Query(
		"SELECT seq,source, target, x1, y1, x2, y2, agg_cost FROM pgr_dijkstra('SELECT gid as id, source, target, length_m as cost FROM ways', $1::bigint , $2::bigint , directed:=false) a INNER JOIN ways b ON (a.edge = b.gid) ORDER BY seq",
		locInfoStart.Source,
		locInfoGoal.Source)

	if errDijkstra != nil {
		log.Fatal(errDijkstra)
	}
	defer rowsDijkstra.Close()

	var agg_cost float64

	isFirstCheck := true
	isSourceCheck := true

	for rowsDijkstra.Next() {

		var x1, y1, x2, y2 float64

		var seq int
		var target int

		// まずnodeを読む
		if err := rowsDijkstra.Scan(&seq, &source, &target, &x1, &y1, &x2, &y2, &agg_cost); err != nil {
			fmt.Println(err)
		}

		// 最初の1回だけ入る
		if isFirstCheck {
			if source == locInfoStart.Source {
				isSourceCheck = true
			} else {
				isSourceCheck = false
			}
			isFirstCheck = false
		}

		var loc LocInfo

		if isSourceCheck {
			loc.Source = source
			loc.Lng = x1
			loc.Lat = y1
		} else {
			loc.Source = target
			loc.Lng = x2
			loc.Lat = y2
		}

		loc.Source = target

		path = append(path, loc)
	}

	// ラストノードだけは手入力
	path = append(path, locInfoGoal)

	totalDistanceKm = agg_cost / 1000.0
	return path, totalDistanceKm
}

// 一番近いステーションのIDを取得
func getNearestStation(dbMap *sql.DB, stationInfo []BikeStation, queryLocation LocInfo) (int, float64) {
	bestDistanceKm := 1000.0 // 十分に大きい数
	var bestStationId int
	for i := 0; i < len(stationInfo); i++ {

		// ダイクストラ法による経路で決定する距離
		// SQLクエリを繰り返し実行するため、処理が遅くなる可能性がある
		_, distKm := getDijkstraPath(dbMap, queryLocation, stationInfo[i].location)

		// 直線距離の概算値(代替の計算方法)
		//distKm, _ := distanceKm(queryLocation.Lng, queryLocation.Lat,
		//	stationInfo[i].location.Lng, stationInfo[i].location.Lat)

		//log.Println("to station", i, "distanceKm=", distKm)

		if distKm < bestDistanceKm {
			bestDistanceKm = distKm
			bestStationId = i
		}
	}
	return bestStationId, bestDistanceKm
}

func main() {

	dbMap, err := sql.Open("postgres",
		"user=postgres password=password host=192.168.0.23 port=15432 dbname=yama_db sslmode=disable")
	log.Println("------------------ map db open ------------------")
	if err != nil {
		log.Fatal("OpenError: ", err)
	}
	defer dbMap.Close()

	// バイクステーション情報の読み込み
	stationInfo := getStationInfo(dbMap)

	//fmt.Println(stationInfo)

	//file2, err2 := os.Open("data/new_20220518weekday.csv")
	file2, err2 := os.Open(os.Args[1])
	if err2 != nil {
		log.Fatal(err2)
	}
	defer file2.Close()

	r2 := csv.NewReader(file2)
	rows2, err2 := r2.ReadAll() // csvを一度に全て読み込む
	if err != nil {
		log.Fatal(err2)
	}

	//file3, err3 := os.Create("data/calc2_new_20220518weekday.csv") // 第2パラメータ
	file3, err3 := os.Create(os.Args[2]) // 第2パラメータ
	if err3 != nil {
		panic(err)
	}
	w := csv.NewWriter(file3)

	output := []string{"id", "age", "origin_loc_Lng", "origin_loc_Lat", "dest_loc_Lng", "dest_loc_Lat", "distance_from_origin", "distance_between_stations", "distance_to_dest", "complain"}

	if err = w.Write(output); err != nil {
		log.Fatal(err)
	}

	for id, row := range rows2 {

		/*
			origin_lng := 131.4686813247102
			origin_lat := 34.17901518198008

			dest_lng := 131.45836175237153
			dest_lat := 34.160484344205294
		*/

		origin_lng, err := strconv.ParseFloat(row[1], 64)
		if err != nil {
			log.Fatal(err)
		}
		origin_lat, err := strconv.ParseFloat(row[0], 64)
		if err != nil {
			log.Fatal(err)
		}

		dest_lng, err := strconv.ParseFloat(row[3], 64)
		if err != nil {
			log.Fatal(err)
		}

		dest_lat, err := strconv.ParseFloat(row[2], 64)
		if err != nil {
			log.Fatal(err)
		}

		age, err := strconv.ParseFloat(row[4], 64) // 年齢も実数扱いする
		if err != nil {
			log.Fatal(err)
		}

		// 最接近のステーションを選ぶ

		var origin_loc, dest_loc LocInfo

		origin_loc.Source, origin_loc.Lng, origin_loc.Lat = fixPosition(dbMap, origin_lng, origin_lat)
		dest_loc.Source, dest_loc.Lng, dest_loc.Lat = fixPosition(dbMap, dest_lng, dest_lat)

		stationId_from_origin, distance_from_origin := getNearestStation(dbMap, stationInfo, origin_loc) // Originから最初のステーション
		stationId_to_dest, distance_to_dest := getNearestStation(dbMap, stationInfo, dest_loc)           // 最後のステーションからDest

		fmt.Println(stationInfo[stationId_from_origin])
		stationstock[stationId_from_origin].outgoing++

		fmt.Println(stationInfo[stationId_to_dest])
		stationstock[stationId_to_dest].incoming++

		_, distance_between_stations := getDijkstraPath(dbMap, stationInfo[stationId_from_origin].location, stationInfo[stationId_to_dest].location)
		_, shortest_distance_total := getDijkstraPath(dbMap, origin_loc, dest_loc)

		fmt.Println("stationId_from_origin, distance_from_origin", stationId_from_origin, distance_from_origin)
		fmt.Println("stationId_to_dest, distance_to_dest", stationId_to_dest, distance_to_dest)
		fmt.Println("distance_between_stations", distance_between_stations)
		fmt.Println("shortest_distance_total", shortest_distance_total)

		// 出発 ― _x[km]の歩行 ― 最初のステーション ― _y[km]の自転車走行 ― 最後のステーション ― _[km]の歩行 ―  到着
		complain := fuzzy_reasoning(distance_from_origin, distance_between_stations, distance_to_dest, age)
		fmt.Println("complain", complain)

		output := []string{
			fmt.Sprint(id),
			fmt.Sprint(age),
			fmt.Sprint(origin_loc.Lng),
			fmt.Sprint(origin_loc.Lat),
			fmt.Sprint(dest_loc.Lng),
			fmt.Sprint(dest_loc.Lat),
			fmt.Sprint(distance_from_origin),
			fmt.Sprint(distance_between_stations),
			fmt.Sprint(distance_to_dest),
			fmt.Sprint(complain)}

		fmt.Println(output)

		if err = w.Write(output); err != nil {
			log.Fatal(err)
		}
	}

	// test
	output = []string{"stationid", "outgoing", "incoming"}
	if err = w.Write(output); err != nil {
		log.Fatal(err)
	}

	for i := 0; i < 40; i++ {
		output = []string{fmt.Sprint(i + 1), fmt.Sprint(stationstock[i].outgoing), fmt.Sprint(stationstock[i].incoming)}
		// i+1しているのは、1からスタートする為
		if err = w.Write(output); err != nil {
			log.Fatal(err)
		}
	}

	defer w.Flush()

	if err := w.Error(); err != nil {
		log.Fatal(err)
	}
}

func fuzzy_reasoning(distance_from_origin, distance_between_stations, distance_to_dest, age float64) float64 {

	////// パラメータの作成

	// 絶対的歩行距離
	walk := min_2(distance_from_origin, distance_to_dest)
	// 総体的自転車移動距離
	ratio := distance_between_stations / (distance_from_origin + distance_between_stations + distance_to_dest)
	// 絶対的自転車移動距離
	bike := distance_between_stations

	// Age(前件部)
	Age_Less := new_condition_MF3(45, 20, "LESS")
	Age_Common := new_condition_MF3(45, 20, "COMMON") // 中央が 42歳
	Age_More := new_condition_MF3(45, 20, "MORE")

	// 絶対的歩行距離(前件部)
	Walk_Less := new_condition_MF3(0.4, 0.1, "LESS")
	Walk_Common := new_condition_MF3(0.4, 0.1, "COMMON")
	Walk_More := new_condition_MF3(0.4, 0.1, "MORE")

	// 相対的自転車移動比率(former)
	Bike_Ratio_Less := new_condition_MF3(0.7, 0.1, "LESS")
	Bike_Ratio_Common := new_condition_MF3(0.7, 0.1, "COMMON")
	Bike_Ratio_More := new_condition_MF3(0.7, 0.1, "MORE")

	// 絶対的自転車距離(前件部)
	Bike_Less := new_condition_MF3(1.5, 1.0, "LESS")
	Bike_Common := new_condition_MF3(1.5, 1.0, "COMMON")
	Bike_More := new_condition_MF3(1.5, 1.0, "MORE")

	// Complain(後件部)
	Complain_LessLess := new_action_MF5(0.5, 0.25, "LESSLESS")
	Complain_Less := new_action_MF5(0.5, 0.25, "LESS")
	Complain_Common := new_action_MF5(0.5, 0.25, "COMMON")
	Complain_More := new_action_MF5(0.5, 0.25, "MORE")
	Complain_MoreMore := new_action_MF5(0.5, 0.25, "MOREMORE")

	// [Rule A00]
	Rule_A00 := min_2(Age_Less.func_X(age), Walk_Less.func_X(walk))
	Complain_LessLess.func_Max(Rule_A00)
	//fmt.Println("Rule_A00", Rule_A00)

	// [Rule A01]
	Rule_A01 := min_2(Age_Less.func_X(age), Walk_Common.func_X(walk))
	Complain_Less.func_Max(Rule_A01)
	//fmt.Println("Rule_A01", Rule_A01)

	// [Rule A02]
	Rule_A02 := min_2(Age_Less.func_X(age), Walk_More.func_X(walk))
	Complain_Common.func_Max(Rule_A02)
	//fmt.Println("Rule_A02", Rule_A02)

	// [Rule A10]
	Rule_A10 := min_2(Age_Common.func_X(age), Walk_Less.func_X(walk))
	Complain_Common.func_Max(Rule_A10)
	//fmt.Println("Rule_A10", Rule_A10)

	// [Rule A11]
	Rule_A11 := min_2(Age_Common.func_X(age), Walk_Common.func_X(walk))
	Complain_Common.func_Max(Rule_A11)
	//fmt.Println("Rule_A11", Rule_A11)

	// [Rule A12]
	Rule_A12 := min_2(Age_Common.func_X(age), Walk_More.func_X(walk))
	Complain_More.func_Max(Rule_A12)
	//fmt.Println("Rule_A12", Rule_A12)

	// [Rule A20]
	Rule_A20 := min_2(Age_More.func_X(age), Walk_Less.func_X(walk))
	Complain_Common.func_Max(Rule_A20)
	//fmt.Println("Rule_A20", Rule_A20)

	// [Rule A21]
	Rule_A21 := min_2(Age_More.func_X(age), Walk_Common.func_X(walk))
	Complain_More.func_Max(Rule_A21)
	//fmt.Println("Rule_A21", Rule_A21)

	// [Rule A22]
	Rule_A22 := min_2(Age_More.func_X(age), Walk_More.func_X(walk))
	Complain_MoreMore.func_Max(Rule_A22)
	//fmt.Println("Rule_A22", Rule_A22)

	// [Rule B00]
	Rule_B00 := Bike_Ratio_Less.func_X(ratio)
	Complain_MoreMore.func_Max(Rule_B00)
	//fmt.Println("Rule_B00", Rule_B00)

	// [Rule B01]
	Rule_B01 := Bike_Ratio_Common.func_X(ratio)
	Complain_Common.func_Max(Rule_B01)
	//fmt.Println("Rule_B01", Rule_B01)

	// [Rule B02]
	Rule_B02 := Bike_Ratio_More.func_X(ratio)
	Complain_LessLess.func_Max(Rule_B02)
	//fmt.Println("Rule_B02", Rule_B02)

	// [Rule C00]
	Rule_C00 := min_2(Age_Less.func_X(age), Bike_Less.func_X(bike))
	Complain_LessLess.func_Max(Rule_C00)
	//fmt.Println("Rule_C00", Rule_C00)

	// [Rule C01]
	Rule_C01 := min_2(Age_Less.func_X(age), Bike_Common.func_X(bike))
	Complain_LessLess.func_Max(Rule_C01)
	//fmt.Println("Rule_C01", Rule_C01)

	// [Rule C02]
	Rule_C02 := min_2(Age_Less.func_X(age), Bike_More.func_X(bike))
	Complain_LessLess.func_Max(Rule_C02)
	//fmt.Println("Rule_C02", Rule_C02)

	// [Rule C10]
	Rule_C10 := min_2(Age_Common.func_X(age), Bike_Less.func_X(bike))
	Complain_Less.func_Max(Rule_C10)
	//fmt.Println("Rule_C10", Rule_C10)

	// [Rule C11]
	Rule_C11 := min_2(Age_Common.func_X(age), Bike_Common.func_X(bike))
	Complain_Common.func_Max(Rule_C11)
	//fmt.Println("Rule_C11", Rule_C11)

	// [Rule C12]
	Rule_C12 := min_2(Age_Common.func_X(age), Bike_More.func_X(bike))
	Complain_More.func_Max(Rule_C12)
	//fmt.Println("Rule_C12", Rule_C12)

	// [Rule C20]
	Rule_C20 := min_2(Age_More.func_X(age), Bike_Less.func_X(bike))
	Complain_Common.func_Max(Rule_C20)
	//fmt.Println("Rule_C20", Rule_C20)

	// [Rule C21]
	Rule_C21 := min_2(Age_More.func_X(age), Bike_Common.func_X(bike))
	Complain_More.func_Max(Rule_C21)
	//fmt.Println("Rule_C21", Rule_C21)

	// [Rule C22]
	Rule_C22 := min_2(Age_More.func_X(age), Bike_More.func_X(bike))
	Complain_MoreMore.func_Max(Rule_C22)
	//fmt.Println("Rule_C22", Rule_C22)

	// Reasoning calculations
	numerator :=
		Complain_LessLess.func_X()*Complain_LessLess.func_Y() +
			Complain_Less.func_X()*Complain_Less.func_Y() +
			Complain_Common.func_X()*Complain_Common.func_Y() +
			Complain_More.func_X()*Complain_More.func_Y() +
			Complain_MoreMore.func_X()*Complain_MoreMore.func_Y()

	denominator :=
		Complain_LessLess.func_Y() +
			Complain_Less.func_Y() +
			Complain_Common.func_Y() +
			Complain_More.func_Y() +
			Complain_MoreMore.func_Y()

	reasoning := numerator / denominator

	return reasoning

}

func max_2(a, b float64) float64 {
	if a > b {
		return a
	} else {
		return b
	}
}

func min_2(a, b float64) float64 {
	if a > b {
		return b
	} else {
		return a
	}
}

type condition_MF3 struct { // Base class for condition_MF3
	center  float64
	width   float64
	express string
}

func new_condition_MF3(_center, _width float64, _express string) *condition_MF3 {
	c3 := new(condition_MF3)
	c3.center = _center
	c3.width = _width
	c3.express = _express
	return c3
}

// Class for the membership function (3 mountains) of the former case
func (c3 *condition_MF3) func_X(_x float64) float64 {
	// x,y denote coordinates on the membership function
	x := _x
	y := 0.0 // The value of y is always greater than or equal to 0 and less than or equal to 1

	if c3.express == "LESS" {
		if x <= c3.center-c3.width {
			y = 1.0
		} else if x <= c3.center {
			y = -1.0 / c3.width * (x - c3.center)
		} else {
			y = 0.0
		}
	} else if c3.express == "COMMON" {
		if x <= c3.center-c3.width {
			y = 0.0
		} else if x <= c3.center {
			y = 1.0/c3.width*(x-c3.center) + 1.0
		} else if x <= c3.center+c3.width {
			y = -1.0/c3.width*(x-c3.center) + 1.0
		} else {
			y = 0.0
		}
	} else if c3.express == "MORE" {
		if x <= c3.center {
			y = 0.0
		} else if x <= c3.center+c3.width {
			y = 1.0 / c3.width * (x - c3.center)
		} else {
			y = 1.0
		}
	} else {
		fmt.Println("MF3: wrong expression")
		os.Exit(1)
	}
	return y
}

type condition_MF5 struct { // Base class for condition_MF5
	center  float64
	width   float64
	express string
}

func new_condition_MF5(_center, _width float64, _express string) *condition_MF5 {
	c5 := new(condition_MF5)
	c5.center = _center
	c5.width = _width
	c5.express = _express
	return c5
}

func (c5 *condition_MF5) func_X(_x float64) float64 {
	// Class for the former membership function (5 mountains)
	// x,y are the coordinates on the membership function

	x := _x
	y := 0.0 // The value of y is always greater than or equal to 0 and less than or equal to 1

	if c5.express == "LESSLESS" {
		if x <= c5.center-2.0*c5.width {
			y = 1.0
		} else if x <= c5.center-c5.width {
			y = -1.0/c5.width*(x-(c5.center-2.0*c5.width)) + 1.0
		} else {
			y = 0.0
		}
	} else if c5.express == "LESS" {
		if x <= c5.center-2.0*c5.width {
			y = 0.0
		} else if x <= c5.center-c5.width {
			y = 1.0/c5.width*(x-(c5.center-c5.width)) + 1.0
		} else if x <= c5.center {
			y = -1.0/c5.width*(x-(c5.center-c5.width)) + 1.0
		} else {
			y = 0.0
		}
	} else if c5.express == "COMMON" {
		if x <= c5.center-c5.width {
			y = 0.0
		} else if x <= c5.center {
			y = 1.0/c5.width*(x-c5.center) + 1.0
		} else if x <= c5.center+c5.width {
			y = -1.0/c5.width*(x-c5.center) + 1.0
		} else {
			y = 0.0
		}
	} else if c5.express == "MORE" {
		if x <= c5.center {
			y = 0.0
		} else if x <= c5.center+c5.width {
			y = 1.0/c5.width*(x-(c5.center+c5.width)) + 1.0
		} else if x <= c5.center+2.0*c5.width {
			y = -1.0/c5.width*(x-(c5.center+c5.width)) + 1.0
		} else {
			y = 0.0
		}
	} else if c5.express == "MOREMORE" {
		if x <= c5.center+c5.width {
			y = 0.0
		} else if x <= c5.center+2.0*c5.width {
			y = 1.0/c5.width*(x-(c5.center+2.0*c5.width)) + 1.0
		} else {
			y = 1.0
		}
	} else {
		fmt.Println("MF5 func_X(): wrong expression")
		os.Exit(1)
	}

	return y
}

/////////////////////////////

type action_MF5 struct { // Base class for action_MF5
	center  float64
	width   float64
	express string
	x       float64
	y       float64
}

type action_MF3 struct { // Base class for action_MF3
	center  float64
	width   float64
	express string
	x       float64
	y       float64
}

func new_action_MF5(_center, _width float64, _express string) *action_MF5 {
	a5 := new(action_MF5)
	a5.center = _center
	a5.width = _width
	a5.express = _express

	if a5.express == "LESSLESS" {
		a5.x = a5.center - 2.0*a5.width
	} else if a5.express == "LESS" {
		a5.x = a5.center - a5.width
	} else if a5.express == "COMMON" {
		a5.x = a5.center
	} else if a5.express == "MORE" {
		a5.x = a5.center + a5.width
	} else if a5.express == "MOREMORE" {
		a5.x = a5.center + 2.0*a5.width
	} else {
		fmt.Println("new_action_MF5: wrong scale expression")
		os.Exit(-1)
	}

	a5.y = 0.0

	return a5
}

func new_action_MF3(_center, _width float64, _express string) *action_MF3 {
	a3 := new(action_MF3)
	a3.center = _center
	a3.width = _width
	a3.express = _express

	if a3.express == "LESS" {
		a3.x = a3.center - a3.width
	} else if a3.express == "COMMON" {
		a3.x = a3.center
	} else if a3.express == "MORE" {
		a3.x = a3.center + a3.width
	} else {
		fmt.Println("new_action_MF3: wrong scale expression")
		os.Exit(-1)
	}

	a3.y = 0.0

	return a3
}

// The latter membership function (5 mountains) class
func (a5 *action_MF5) func_Y() float64 {
	return a5.y
}

// The latter membership function (3 mountains) class
func (a3 *action_MF3) func_Y() float64 {
	return a3.y
}

func (a5 *action_MF5) func_Max(b float64) {
	a5.y = max_2(b, a5.y)
}

func (a3 *action_MF3) func_Max(b float64) {
	a3.y = max_2(b, a3.y)
}

func (a5 *action_MF5) func_X() float64 {
	return a5.x
}

func (a3 *action_MF3) func_X() float64 {
	return a3.x
}